Evaluation of an integral

Dr. E. Assing

The goal of this note is to prove the integral identity contained in the fol-
lowing lemma.

Lemma 1. Forn € NU{0}, R(v) > —1 and a > 0 we have
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Here ) (z) is the Gegenbauer Polynomial (see [3 8.930]) and Iy(z) is the
usual I-Bessel function (see [3, 8.406]).

Remark 1. Note that for n =0 we have C(gy)(z) =1 and
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The latter is a well known duplication formula for the T'-function. Thus for
n = 0 we recover
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This agrees with [3, 5.588.1] (with v~ v+ %, u=a and = b). However, the
evaluation provided in Lemma differs from [3, 7.322] by a factor of 2. This is
exactly the factor by which [3, 7.8322] differs from [3, 3.388.1] when specialised
ton =0.

This mistake seems to go back to [1, 4.11.(9) (p.171)]. The same issue man-
ifests itself in [1, 5.15.(6)] after taking the Inverse Laplace Transform. Indeed,
when specialising [1, 5.15.(6)] to n = 0 it differs from [1, 5.15.(5)] by the same
factor of 2.

Corollary 1. Forn € NU{0}, R(v) > —% and a > 0 we have
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Our formula is consistent with [1, 5.15(5) (p.277)] when specialised to n = 0
but differs from [1, 5.15(6) (p.277)] by a factor of%.

Proof. This follows directly from Lemma [1| after taking the Inverse Laplace
Transform. O



Preliminaries

We will derive Lemma 1| from using a recursive relation for the Gegenbauer
Polynomials. It seems fair to take for granted as it is a classical integral
representation for I,(z) and is given in [3] 3.388.1]. (One can also verify
using Mathematica for example.)

For the record we state the following version of :
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Indeed this follows from (|1|) when setting a = 1 and changing variables z +— x+1.
Finally we need the recursion
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The latter follows directly from [2 18.9(iii)] (see http://dlmf.nist.gov/18.
9.E20).

Note that we have already used the well known (see [3 8.335.1]) duplication
formula

I'(2s) 1
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We will also make use of the simple formula
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given by [3| 8.331.1].

Proof of Lemma [1]

We first compute the following simpler integral.

Lemma 2. Forn € NU{0}, R(v) > —1 and a > 0 we have
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Proof. Note that, if n = 0, the statement is given in . Thus we can proceed by
induction and assume that the integral has been computed for some n € NU{0}
and arbitrary v with ®(v) > —1.

For notational sake we write

fY(x) = (1 — 2"~ 2C%(x) and
2v
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With this notation (3) reads
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and we rewrite our integral as
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Notice that f4+1(41) = 0, so that integration by parts yields
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This concludes the induction step and we are done. O

Proof of Lemmal[l: The remaining task is to reduce the statement of Lemma
to Lemma [2] by suitable changes of variables. Indeed we compute
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Now we apply Lemma [2] and get
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This is the desired formula and we are done. O
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