
ON GAPS BETWEEN PRIMES

EDGAR ASSING

1. Introduction

Many of the most interesting results in (analytic) number theory are in one
way and another concerned with the distribution of primes. While our knowledge
has vastly improved over the years, there are still many interesting problems and
conjectures that remain untouched.

Presumably everybody knows Euclid’s proof that there are infinitely many prime
numbers. Let us give an alternative proof of this:1

Lemma 1.1. There are infinitely many primes. Even more, the sum
∑

p
1
p

di-
verges.

Proof. Suppose that
∑

p
1
p

is convergent. Then there is X > 0 such that∑
p>X

1

p
<

1

2
.

Multiplying this by an integer N yields∑
p>X

N

p
<
N

2
.

We define the two numbers

NX = ]{0 < n ≤ N : p | n for some p > X} and

NX = ]{0 < n ≤ N : (p, n) = 1 for all p > X}.
Of course we have

NX +NX = N (1)

The key observation is that

NX ≤
∑
p>X

⌊
N

p

⌋
≤ N

2
.

In order to estimate NX we need to make some observations. First suppose ]{p ≤
X} = k. Then every integer n contributing to the count NX can be written as
n = a · b for a square-free number a. Obviously there are at most 2k possibilities

1This proof is due to Erdös and can be found in [AZ]. Note that it was Euler who first proved
that

∑
p

1
p diverges.

1
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to choose square-free numbers with prime divisors ≤ X. To estimate the number
of possible square-parts we simply observe that b ≤

√
n ≤
√
N . We thus have

NX ≤ 2k ·
√
N.

Combining our two estimates yields

NX +NX <
N

2
+ 2k
√
N.

For N sufficiently large (for example N = 22k+2) we have NX +NX < N . This is
a contradiction to (1). �

Nowadays we can not only say that there are infinitely many primes, but we
also have a good asymptotic understanding of their number:

Theorem 1.2 (Prime Number Theorem). There is a constant c > 0 such that

π(X) = ]{p ≤ X} = Li(X) +O(Xe−c
√

log(X)).

Remark 1.3. Here we use

Li(X) =

∫ X

0

dy

log(y)
=

X

log(X)
·

( ∑
0≤l<m

l! log(X)−l +O(log(X)−m)

)
.

In particular, we have the maybe more familiar statement

π(X) =
X

log(X)
+O

(
X

log(X)2

)
.

In order to truly understand the distribution of prime numbers the next natural
question is how they are distributed in arithmetic progressions. More precisely we
can ask for an asymptotic understanding of the counting function

π(X; q, a) = ]{p ≤ X : p ≡ a mod q}.
Of course, if (a, q) 6= 1, then this is rather un-interesting. On the other hand, it
was shown by Siegel, that every arithmetic progression with (a, q) = 1 contains
infinitely many primes. This can be made quantitative as follows:

Theorem 1.4 (Siegel-Walfisz). Let A > 0 be fixed. Then there is a constant
C = C(A) > 0 such that

π(X; a, q) =
1

ϕ(q)
Li(X) +O(Xe−C

√
log(X))

for all q ≤ log(X)A and all a with (a, q) = 1.

The results mentioned so far are just the starting point and (in some sense)
much more can be said. But let us get to some open problems. At the 1912
ICM in Cambridge listed the following four problems as unattackable with current
technology:2

2All of these are still open so nothing much has changed...
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(1) (Goldbach Conjecture) Every (positive) even integer is the sum of two
primes.

(2) (Twin Prime Conjecture) There are infinitely many primes p such that p+2
is also prime.

(3) (Legendre’s Conjecture) For every n ∈ N there is a prime between n2 and
(n+ 1)2.

(4) There are infinitely many primes of the form n2 + 1.

Another very important (and hard) conjecture in the field is due to Hardy and
Littlewood. To state it we need the following definition:

Definition 1.1. A set H = {h1, . . . , hk} of distinct non-negative integers is called
admissible if, for every prime p, there is an integer ap such that ap 6≡ hi mod p for
all i = 1, . . . , k.

Conjecture 1.1 (Prime k-tuple conjecture). Let H = {h1, . . . , hk} be admissible,
Then there are infinitely many integers n such that n+ h1, . . . , n+ hk are prime.

Using Selberg’s sieve it can be seen relatively easily that

π(X,H) = ]{n ≤ X : n+ hi is prime ∀i}

≤ 2kk! ·H · X

log(X)k
+Ok,H

(
X log log(X)

log(X)k+1

)
,

where H is an admissible k-tuple and

H =
∏
p

(
1− ω(p)

p

)(
1− 1

p

)−1

.

The conjectural asymptotic would be

π(x,H) ∼ H · x

log(x)k
.

Note that 2-tuple conjecture implies the Twin Prime Conjecture, by taking the
tuple {0, 2}. For k > 1 there is no case of the Prime k-tuple conjecture known.
However, the slightly weaker problem of showing that small prime gaps exist was
rather successfully studied over the years. In order to record some milestone results
let is number the primes as

p1 = 2 < p2 = 3 < p3 = 5 < p4 < . . . < pn < pn−1 < . . . .

We have

• Goldston, Pintz and Yildrim (GPY) shew that

lim inf
n

pn+1 − pn
log(pn)

= 0.

• Zhang extended this work to

lim inf
n

(pn+1 − pn) ≤ 70000000.
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• Polymath 8(a) pushed Zhang’s argument to obtain

lim inf
n

(pn+1 − pn) ≤ 4680.

• Maynard introduced exciting new ideas3 and found that

lim inf
n

(pn+1 − pn) ≤ 600.

• Polymath 8b refined these ideas to establish

lim inf
n

(pn+1 − pn) ≤ 246.

Note that the GPY-method fails to prove that bounded intervals can contain
two or more primes. Indeed, the Goldston, Pintz and Yildrim could only show

lim inf
n

pn+2 − pn
log(pn)

= 0.

conditional on the Elliott-Halberstam conjecture (see Conjecture 4.1 below). The
new ideas by Maynard alluded to above allow us to produce much stronger and
unconditional results:

Theorem 1.5 (Maynard 2015). For m ∈ N we have

lim inf
n

(pn+m − pn)� m3e4m.

The goal of this lecture is to reproduce Maynard’s argument. Before doing so
we will have to cover some preliminaries. While we will take the Prime Number
Theorem (PNT) and the Siegel-Walfisz Theorem for granted we will give a proof of
the Bombieri-Vinogradov Theorem. As we will see the latter is a crucial ingredient
for Maynard’s argument.

1.1. Notation. Let us summarize some of the most common notations used in
the lectures:

• Throughout the letter p will be reserved fro prime numbers. We write P
for the set of all prime numbers and

P∞ = {pα : α ∈ N, p ∈ P}.
• We write (n,m) for the greatest common divisor (i.e. the gcd) of n and m.

The least common multiple (i.e. the lcm) is written as [n,m] = nm
(n,m)

.

• We write e(x) = e2πix. This defines an additive character on R/Z and we
will often use character orthogonality in the form

1

d

d∑
k=1

e

(
n
k

d

)
=

{
1 if d | n,
0 else.

for n, d ∈ N.

3Similar ideas were independently developed by Tao.
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• We use the asymptotic o,O-notation. Furthermore we write f � g if
f = O(g). We indicate dependencies in the implicit constants by adding
subscripts.

2. Arithmetic Functions

A function f : N→ C is called an arithmetic function. Given two arithmetic
functions f, g we can define the convolution

[f ∗ g](n) =
∑
d|n

f(d)g
(n
d

)
.

We call an arithmetic function f multiplicative if

f(nm) = f(n) · f(m) for n,m ∈ N with (n,m) = 1. (2)

Furthermore, we say that f is completely multiplicative if f(nm) = f(n)f(m)
for all n,m ∈ N.

Remark 2.1. Note that a multiplicative f 6= 0 must satisfy f(1) = 1. Furthermore,
it is completely determined by its values on prime powers f(pα) for pα ∈ P∞.
Similarly, completely multiplicative f are characterized by their values f(p) for
p ∈ P .

Lemma 2.2. Let f and g be multiplicative, then f ∗ g is multiplicative.

Proof. Let n,m ∈ N with (n,m) = 1. Then the divisors d | nm are in one to one
correspondence with tuples (dn, dm) such that dn | n and dm | m. We have

[f ∗ g](nm) =
∑
d|nm

f(d)g
(nm
d

)
=
∑
dn|n

∑
dm|m

f(dndm)g

(
nm

dndm

)
=
∑
dn|n

f(dn)g(n/dn)
∑
dm|m

f(dm)g(m/dm) = [f ∗ g](n) · [f ∗ g](m).

In the last step we have exploited multiplicativity of f and g. �

Let us give some examples of (more ore less) interesting arithmetic functions:

• The simplest (completely multiplicative) arithmetic function is the constant
function 1(n) = 1 and the identity id(n) = n.
• We define δ1(n) = 1 if n = 1 and 0 otherwise. This is the identity for the

convolution:
f ∗ δ1 = f.

• We also have the divisor function

τ(n) = ]{d | n} = [1 ∗ 1](n).

Similarly we have higher divisor functions

τk = [1 ∗ . . . ∗ 1]︸ ︷︷ ︸
k times

(n) = ]{(d1, . . . , dk) ∈ Nk : d1 · · · dk = n}.
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Of course τ2 = τ .
• We define ϕ(n) = ](Z/nZ)×. By the Chinese Remainder Theorem this is a

multiplicative (not completely multiplicative) arithmetic function given by

ϕ(pα) = pα−1(p− 1).

• A central role in the theory of prime numbers is played by the von Mangoldt
function

Λ(n) =

{
log(p) if n = pα ∈ P∞,
0 else.

• Finally we have the Möbius function given by

µ(n) =

{
(−1)r if n = p1 · · · pr for r distinct primes p1, . . . , pr ∈ P ,
0 else.

There are many interesting convolution identities between these arithmetic func-
tions. For example

log(n) =
∑
pα||n

α · log(p) =
∑
p∈P
α∈N
pα|n

log(p) =
∑
d|n

Λ(d) = [Λ ∗ 1](n). (3)

We also claim that
ϕ(n) = [µ ∗ id](n). (4)

Since we know that both sides are multiplicative it suffices to check this on prime
powers:

ϕ(pα) = pα−1(p− 1) = pα − pα−1 =
∑

0≤β≤α

µ(pβ)pα−β = [µ ∗ id](pα).

More importantly we have

[µ ∗ 1](n) =
∑
d|n

µ(d) = δ1(n) =

{
1 if n = 1,

0 else.
.

This is also easily checked on prime powers. We deduce the following important
technique:

Lemma 2.3 (Möbius Inversion). For two arithmetic functions f and g the follow-
ing two relations are equivalent:

g(n) =
∑
d|n

f(d) and f(n) =
∑
d|n

µ(d)g(n/d).

As an easy application we find that

Λ(n) =
∑
d|n

µ(d) log(n/d).
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This indeed follows from (3) and Möbius inversion.
Let us get used to some estimates. First we recall Mertens’ formula:∏

p≤R

(
1− 1

p

)
=

e−γ

log(R)

(
1 +O

(
1

log(R)

))
. (5)

This can be proven in an elementary way and we omit the details. We will however
record the following estimate:

Lemma 2.4. Let R > 0. For a squarefree number W with prime divisors less than
R we have ∑

u≤R
(u,W )=1

µ(u)2

ϕ(u)
� ϕ(W )

W
log(R).

Proof. We first observe that µ(u)2 is precisely the characteristic function on square-
free (positive) integers. Thus we can estimate

∑
u≤R

(u,W )=1

µ(u)2

ϕ(u)
≤
∏
p≤R
p-W

(
1 +

1

ϕ(p)

)
=
∏
p≤R
p-R

p

p− 1
=
ϕ(W )

W

[∏
p≤R

(1− 1

p
)

]−1

We conclude by applying Mertens’ formula to the remaining product. �

In another direction we will encounter the estimate

Lemma 2.5. We have ∑
n≤R

τk(n)�k R · log(R)k.

Proof. We estimate∑
n≤R

τk(n) ≤ R ·
∑
n≤R

τk(n)

n
≤ R ·

∏
p≤R

(∑
α≥0

τk(p
α)p−α

)
. (6)

At this point we observe that

∑
α≥0

τk(p
α)p−α =

(∑
α≥0

p−α

)k

=

(
1− 1

p

)−k
In particular, we have

∑
n≤R

τk(n) ≤ R ·

[∏
p≤R

(
1− 1

p

)]−k
.

Thus we are done by Mertens’ formula. �
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Remark 2.6. With a little trick one can actually improve the estimate above to∑
n≤R

τk(n)�k R · log(R)k−1.

Indeed, we write τk(n) = [1 ∗ τk−1](n). Opening the convolution gives∑
n≤R

τk(n) =
∑
n≤R

∑
d|n

τk−1(d) =
∑
d≤R

τk−1(d) ·
⌊
R

d

⌋
≤ R

∑
d≤R

τk−1(d)d−1.

From here we can continue the argument as above, ultimately saving one loga-
rithm.4 This is essentially sharp. Indeed one has the asymptotic∑

n≤R

τk(n) = R · Pk(log(R)) +O(R1− 1
k ),

where Pk is a polynomial of degree k − 1.

We turn to another very important class of completely functions. These are
obtained from characters of (Z/qZ)×. More precisely we take a group homomor-
phism

χ : (Z/qZ)× → S1

and associate the completely multiplicative function arithmetic (also denoted by
χ):

χ(n) =

{
χ(n mod q) if (n, q) = 1,

0 else.

This makes χ a function on Z (and in particular on N), which is periodic modulo
q. We call these functions Dirichlet characters modulo q. We write

χ0(m) = δ1((m, q))

for the principal Dirichlet character. (This corresponds to the trivial character of
(Z/qZ)×.)

Lemma 2.7 (Character Orthogonality). We have

1

ϕ(q)

∑
a mod q

χ(a) =

{
1 if χ = χ0,

0 else.

and

1

ϕ(q)

∑
χ mod q

χ(a) =

{
1 if a ≡ 1 mod q,

0 else.

4The same trick works if we want to estimate a multiplicative function f by writing f = 1 ∗ h
for h = µ ∗ f . One only needs that h is non-negative.
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Proof. The two statements are dual to each other. We will prove the first one.
The second one is similar. First note that∑

a mod q

χ0(a) =
∑

a mod q
(a,q)=1

1 = ϕ(q).

On the other hand, if χ 6= χ0, then there is b with (b, q) = 1 and χ(b) 6= 1. We
now write

χ(b)
∑

a mod q

χ(a) =
∑

a mod q

χ(ab) =
∑

a mod q

χ(a).

However, this identity can only be true if the a-sum vanishes. �

Definition 2.1. Let χ be a Dirichlet character modulo q. The conductor q∗ of χ
is defined to be the smallest divisor of q such that we can write χ = χ∗ ·χ0. where
χ∗ is a character modulo q∗. If q∗ = q, then we say that χ is primitive.

Finally, given a Dirichlet character χ modulo q, we define the Gaußsum by

τ(χ) =
∑

a mod q

χ(a)e(
a

q
).

Lemma 2.8. Let χ be a primitive Dirichlet character modulo q. Then we have

τ(χ)τ(χ) = χ(−1)q.

In particular, |τ(χ)| = √q.

Proof. We write

τ(χ)τ(χ) =
∑

a mod q

∑
b mod q

χ(a)χ(b)e

(
a+ b

q

)
=

∑
a mod q
(a,q)=1

∑
b mod q

χ(a)χ(b)e

(
a+ b

q

)
.

A change of variables in the b-sum yields

τ(χ)τ(χ) =
∑

b mod q

χ(b)
∑

a mod q
(a,q)=1

e

(
a(b+ 1)

q

)
︸ ︷︷ ︸

=cq(b+1)

.

The inner sum is a Ramanjuan sum. In general we can observe that∑
d|q

cq/d(x) =
∑

a mod q

e(
ax

q
) = q · δq|x.

By Möbius inversion we get

cq(x) =
∑
d|(q,x)

µ(q/d)d.
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Inserting this above yields

τ(χ)τ(χ) =
∑
d|q

dµ(q/d)
∑

b mod q
b≡−1 mod d

χ(b).

If χ is primitive, then the remaining b-sum vanishes unless d = q. This proves the
first statement. Finally,

τ(χ) =
∑

a mod q

χ(a)e(
a

q
) = χ(−1)

∑
a mod q

χ(a)e(−a
q

) = χ(−1)τ(χ).

With the statement shown above this implies |τ(χ)|2 = q and the proof is complete.
�

3. The large sieve

The main result in this section is the multiplicative large sieve inequality stated
in Lemma 3.5. We will approach this in an ad-hoc manner, but we will later see
how useful such a technical estimate turns out to be.

We start by establishing the following useful inequality.

Lemma 3.1. Let f : [α− 1
2
δ, α+ 1

2
δ]→ R be continuously differentiable. Then we

have

|f(α)| ≤ δ−1

∫ α+ 1
2
δ

α− 1
2
δ

|f(β)|dβ +
1

2

∫ α+ 1
2
δ

α− 1
2
δ

|f ′(β)|dβ.

Proof. After a change of variables it is sufficient to show that∣∣∣∣f (1

2

)∣∣∣∣ ≤ ∫ 1

0

(
|f(t)|+ 1

2
|f ′(t)|

)
dt.

To see this we write

f

(
1

2

)
=

∫ 1

0

f(t)dt+

∫ 1
2

0

tf ′(t)dt+

∫ 1

1
2

(t− 1)f ′(t)dt.

This can be rewritten as

f

(
1

2

)
=

∫ 1

0

f(t)dt+

∫ 1

0

ρ(t)f ′(t)dt.

We are done by simply observing that |ρ(t)| ≤ 1
2

for t ∈ [0, 1]. �

With this at hand we can prove the following:

Lemma 3.2. Suppose α1, . . . , αR are distinct real numbers that are distinct modulo
1. Let δ = mini 6=j ‖αi − αj‖.5 Then, for an arithmetic function a supported in

5Here ‖β‖ denotes the distance of β to the nearest integer. This defines a metric on R/Z.
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M < n ≤M +N we have

R∑
r=1

∣∣∣∣∣∑
n

a(n) · e(αrn)

∣∣∣∣∣
2

≤ (δ−1 + πN)‖a‖2
2.

Proof. We define S(α) =
∑

n a(n) · e(αn). Note that this is essentially a trigono-
metric polynomial. We apply Lemma 3.1 with f(α) = S(α)2. This gives us

|S(αr)|2 ≤ δ−1

∫ α+ 1
2
δ

α− 1
2
δ

|S(β)|2dβ +

∫ α+ 1
2
δ

α− 1
2
δ

|S(β) · S ′(β)|dβ.

Summing this over R and recalling the definition of δ allows us to estimate

R∑
r=1

|S(αr)|2 ≤ δ−1

∫ 1

0

|S(β)|2dβ +

∫ 1

0

|S(β) · S ′(β)|dβ. (7)

We only have to estimate the right hand side. First consider∫ 1

0

|S(β)|2dβ =
∑
n1,n2

a(n1)a(n1)

∫ 1

0

e((n1 − n2)β)dβ =
∑
n

|a(n)|2 = ‖a‖2
2.

Next we note that

S ′(β) = 2π
∑
n

na(n) · e(nβ).

Thus by Cauchy-Schwarz and (7) we have

R∑
r=1

|S(αr)|2 ≤ δ−1‖a‖2
2 + 2π‖a‖2 ·

(∑
n

n2|a(n)|2
) 1

2

.

For M = −b1
2
Nc we have n2 ≤ 1

4
N2 so that we are done in this case. By a simple

shifting argument it is easy to deduce the case of general M . �

Remark 3.3. In the set up of Lemma 3.2 we can take R = 1 and an = e(−nα1).
Then ‖a‖2

2 = N and S(α1) = N . With this choice we have

|S(α1)|2 = N · ‖a‖2
2.

On the other hand we can compute∫ 1

0

R∑
r=1

|S(α + αr)|2dα = R · ‖a‖2
2.

In particular, there is α0 ∈ [0, 1] with

R∑
r=1

|S(α + αr)|2 ≥ R · ‖a‖2
2.
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We can take αr = r
R

and α′r = α0 + αr. These points have distance δ = R−1. For
this choice of points we have the lower bound

R∑
r=1

|S(α′r)|2 ≥ δ−1 · ‖a‖2
2.

We conclude that, if we are looking for an estimate of the form

R∑
r=1

|S(αr)|2 ≤ ∆(N, δ) · ‖a‖2
2

which is uniform in all parameters, then we must have

∆(N, δ) ≥ max(N, δ−1).

Thus, our large sieve estimate is close to optimal in many situations. Note that it
can be slightly improved, but this is irrelevant for our purposes.

More important for our needs is the following special case.

Corollary 3.4. For any arithmetic function a supported in M ≤ n < M +N we
have ∑

q≤Q

∑
a mod q
(a,q)=1

∣∣∣∣∣ ∑
M<n≤M+N

a(n)e

(
an

q

)∣∣∣∣∣
2

≤ (Q2 + πN)‖a‖2
2.

Proof. This follows from Lemma 3.2 applied to the numbers

{α1, . . . , αR} = {a
q

: q ≤ Q, 1 ≤ a < q with (a, q) = 1}

It is easy to see that in this case we can use δ = Q2. Indeed∥∥∥∥a1

q1

− a2

q2

∥∥∥∥ =

∥∥∥∥a1q2 − a2q1

q1q2

∥∥∥∥ ≥ (q1q2)−1.

This completes the proof. �

Lemma 3.5. For any arithmetic function a supported in M < n ≤ M + N we
have ∑

q≤Q

q

ϕ(q)

∑
χ mod q
primitive

∣∣∣∣∣ ∑
M<n≤M+N

a(n)χ(n)

∣∣∣∣∣
2

≤ (Q2 + πN) · ‖a‖2
2.

Proof. Let χ be a primitive Dirichlet character modulo q. Then, for any n, we
have

τ(χ)χ(n) =
∑

a mod q

χ(a)e

(
an

q

)
.
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When (n, q) = 1, then this follows from the definition of the Gauß sum and a
simple change of variables. When (n, q) 6= 1, we leave it as an exercise to check
that both sides are actually zero.

Using this we can write∑
M≤n<M+N

a(n)χ(n) =
1

τ(χ)

∑
b mod q

χ(b)
∑

M≤n<M+N

a(n) · e
(
bn

q

)
︸ ︷︷ ︸

=S(b/q)

.

Recall that, since χ is primitive, we have |τ(χ)| = √q by Lemma 2.8. We get∣∣∣∣∣ ∑
M≤n<M+N

a(n)χ(n)

∣∣∣∣∣
2

=
1

q

∣∣∣∣∣ ∑
b mod q

χ(b)S

(
b

q

)∣∣∣∣∣
2

.

Summing both sides over primitive characters χ modulo q and over q ≤ Q (with
weight q/ϕ(q) yields

∑
q≤Q

q

ϕ(q)

∑
χ mod q
primitive

∣∣∣∣∣ ∑
M≤n<M+N

a(n)χ(n)

∣∣∣∣∣
2

=
∑
q≤Q

1

ϕ(q)

∑
χ mod q
primitive

∣∣∣∣∣ ∑
b mod q

χ(b)S

(
b

q

)∣∣∣∣∣
2

≤
∑
q≤Q

1

ϕ(q)

∑
χ mod q

∣∣∣∣∣ ∑
b mod q

χ(b)S

(
b

q

)∣∣∣∣∣
2

At this point we open the square on the right hand side and execute the χ-sum:

∑
χ mod q

∣∣∣∣∣ ∑
b mod q

χ(b)S

(
b

q

)∣∣∣∣∣
2

=
∑

χ mod q

∑
b1,b2 mod q

χ(b1)χ(b2)S

(
b1

q

)
S

(
b2

q

)

=
∑

b1,b2 mod q
(b1b2,q)=1

S

(
b1

q

)
S

(
b2

q

) ∑
χ mod q

χ(b1)χ(b2)

= ϕ(q)
∑

b mod q
(b,q)=1

∣∣∣∣S ( bq
)∣∣∣∣2 .

Thus we have seen that∑
q≤Q

q

ϕ(q)

∑
χ mod q
primitive

∣∣∣∣∣ ∑
M≤n<M+N

a(n)χ(n)

∣∣∣∣∣
2

≤
∑
q≤Q

∑
b mod q
(b,q)=1

∣∣∣∣∣ ∑
M≤n<M+N

a(n) · e
(
bn

q

)∣∣∣∣∣
2

.

We are done after applying Corollary 3.4. �
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4. The Bombieri-Vinogradov Theorem

In the introduction we already mentioned the Siegel-Walfisz Theorem about
primes in arithmetic progressions. One problem with this result is that it only
works for relatively short arithmetic progressions. However, in practice one often
faces the problem of having to deal with longer arithmetic progressions. Instead of
looking to extend the range of the modulus in the Siegel-Walfisz Theorem, which
is very hard, one can often work with certain average statements. This motivates
us to make the following definition:

Definition 4.1 (Level of Distribution). We say that the primes have level of
distribution θ > 0, if for every A > 0, we have∑

q≤xθ
max

(a,q)=1

∣∣∣∣π(x; q, a)− π(x)

ϕ(q)

∣∣∣∣�A
x

log(x)A
.

Conjecture 4.1 (Elliott-Halberstam). The primes have level of distribution θ for
every θ < 1.

While this conjecture is out of reach of current technology one can go essentially
half way. This the consequence of the classical Bombieri-Vinogradov Theorem,
which we want to prove in this section:6

Theorem 4.1 (Bombieri-Vinogradov). The primes have level of distribution θ for
all θ < 1

2
. More precisely we will show that for any A ≥ 0 there is B = B(A) such

that ∑
q≤Q

max
(a,q)=1

∣∣∣∣π(x; q, a)− π(x)

ϕ(q)

∣∣∣∣�A
x

log(x)A

as long as Q ≤ x
1
2 log(x)−B.

Remark 4.2. Recent developments in (analytic) number theory allow one to estab-
lish level of distribution beyond 1

2
. This comes at the cost that one has to restrict

the range of q in other ways. Results in this direction are very deep and have
many interesting applications.

Let us write

Df (x; q, a) =
∑
n≤x

n≡a mod q

f(n)− 1

ϕ(q)

∑
n≤x

(n,q)=1

f(n).

We will start by showing that in order to prove the Bombieri-Vinogradov Theorem
it is sufficient to study DΛ(x, q, a).

6We follow the argument given in [IK, Sectio 17.2 and 17.3].
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Lemma 4.3. The Bombieri-Vinogradov Theorem follows from the estimate∑
q≤Q

max
1≤t≤x

max
(a,q)=1

|DΛ(t; q, a)| �A
x

log(x)A
(8)

for Q ≤ x
1
2 log(x)−B.

Passing between π(x) resp. π(x; q, a) and

ψ(x) =
∑
n≤x

Λ(n) resp. ψ(x; q, a) =
∑
n≤x

n≡a mod q

Λ(n)

is a rather standard procedure. For completeness we provide the details.

Proof. We define

fa(n; q) = 1(a+qZ)∩P(n)− 1

ϕ(q)
1P(n).

In particular, we have

π(x; q, a)− π(x)

ϕ(q)
=
∑
n≤x

fa(n; q).

At this point we want to include a logarithm. To do so we need partial summa-
tion:7 ∑

n≤x

f(n)g(n) = g(x)
∑
n≤x

f(n)−
∫ x

1

(∑
n≤t

f(n)

)
g′(t)dt, (9)

for continuously differentiable g. We apply this with g(n) = 1
log(n)

and f(n) =

fa(n; q) log(n) and obtain

D1P (x, q, a) = log(x)−1
∑
n≤x

fa(n; q) log(n)−
∫ x

1

(∑
n≤t

fa(n; q) log(n)

)
dt

t log(t)2
.

We only need to account for prime powers and divisors of q:

∑
n≤t

fa(n; q) log(n) = DΛ(x, q, a)−
∑
k≥2

 ∑
pk≤x

pk≡a mod q

log(p)− 1

ϕ(q)

∑
pk≤x

log(p)


+O

(
τ(q)

ϕ(q)
log(q)

)
= DΛ(x, q, a) +O

(
x

1
2 log(x)2 +

τ(q)

ϕ(q)
log(q)

)
.

7This is an easy consequence of partial integration and an indispensable tool for every analytic
number theorist.
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This is a very wasteful estimate, but good enough for our purposes. So far we have
seen that

π(x; q, a)− π(x)

ϕ(q)
= log(x)−1DΛ(x, q, a)−

∫ x

1

DΛ(t, q, a)
dt

t log(t)2

+O

(
x

1
2 log(x) +

τ(q) log(q)

ϕ(q)
log(x)

)
.

We immediately get the bound

max
(a,q)=1

∣∣∣∣π(x; q, a)− π(x)

ϕ(q)

∣∣∣∣� max
t≤x

max
(a,q)=1

|DΛ(t, q, a)|+ x
1
2 log(x).

Summing over q, applying (8) and adjusting B = B(A) produces the claim of the
Bombieri-Vinogradov Theorem. �

We return to the general setting studying Df (x, q, a) for a wide class of arith-
metic functions f . We start with a little preparatory lemma:

Lemma 4.4. Let β be arithmetic function supported on 1 ≤ n ≤ N such that

|Dβ(N ; q, a)| ≤ N
1
2 ∆9 · ‖β‖2,

for some 0 < ∆ ≤ 1 and all (a, q) = 1. Then, for a non-trivial character χ modulo
r and s ∈ N we have ∣∣∣∣∣∣

∑
(n,s)=1

β(n)χ(n)

∣∣∣∣∣∣ ≤ N
1
2 ∆3r · τ3(s) · ‖β‖2 (10)

Proof. We first remove the condition (n, s) = 1 using Möbius inversion:∑
(n,s)=1

β(n)χ(n) =
∑
k|s

µ(k)
∑

n≡0 mod k

β(n)χ(n).

Now we will fix a parameter K and split the k-sum accordingly:∑
(n,s)=1

β(n)χ(n) =
∑
k|s
k≤K

µ(k)
∑
l|k

µ(l)
∑

(n,l)=1

β(n)χ(n) +
∑
k|s
k>K

µ(k)
∑

n≡0 mod k

β(n)χ(n).

By [HLP, Theorem 7] we estimate the second sum by∑
k|s
k>K

µ(k)
∑

n≡0 mod k

β(n)χ(n)� ‖β‖2 ·N
1
2

∑
k|s
k>K

k−
1
2 ≤ N

1
2K−

1
2 τ(s) · ‖β‖2.

To estimate the first sum we will use our assumption on β. However, we first must
reinsert a co-primality condition. This is done by inclusion-exclusion:∑

k|s
k≤K

µ(k)
∑
l|k

µ(l)
∑

(n,l)=1

β(n)χ(n) =
∑
k|s
k≤K

µ(k)
∑
l|k

µ(l)
∑

a mod rl
(a,rl)=1

χ(a)Dβ(N ; rl, a)
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Note that we have artificially inserted the leading term in the definition ofDβ(N ; rl, a).
This is possible because χ is non-trivial. Estimating this in view of our assumption
yields∑

k|s
k≤K

µ(k)
∑
l|k

µ(l)
∑

(n,l)=1

β(n)χ(n)� ‖β‖2 ·N
1
2 ∆9

∑
k|s
k≤K

|µ(k)|
∑
l|k

|µ(l)|ϕ(rl)

� N
1
2 ∆9Krτ3(s) · ‖β‖2.

Combining the estimates for both ranges of K gives∑
(n,s)=1

β(n)χ(n)� N
1
2K−

1
2 τ(s) · ‖β‖2 +N

1
2 ∆9Krτ3(s) · ‖β‖2.

The result follows after choosing K = ∆−6. �

Proposition 4.5. Let β be an arithmetic function supported on 1 ≤ n ≤ N such
that

|Dβ(N ; q, a)| ≤ N
1
2 ∆9 · ‖β‖2,

for some 0 < ∆ ≤ 1 and all (a, q) = 1. Furthermore, let α be an arithmetic
function supported in 1 ≤ n ≤M . Then we have∑
q≤Q

max
(a,q)=1

|Dα∗β(MN ; q, a)| � (∆
√
MN +

√
M +

√
N +Q) log(Q)4 · ‖α‖2‖β‖2.

Proof. We start by opening the definition of Dα∗β(MN ; q, a) and applying charac-
ter orthogonality:

Dα∗β(MN ; q, a) =
∑
n≤MN

n≡a mod q

[α ∗ β](n)− 1

ϕ(q)

∑
n≤MN
(n,q)=1

[α ∗ β](n)

=
1

ϕ(q)

∑
χ mod q

non-trivial

χ(a)
∑
n≤MN

[α ∗ β](n)χ(n)

=
1

ϕ(q)

∑
χ mod q

non-trivial

χ(a)

(∑
m

α(m)χ(m)

)(∑
n

β(n)χ(n)

)
.

In the last step we have simply used the definition of the convolution and the
complete multiplicativity of χ. Inserting this in the quantity we are aiming to
estimate leaves us to treat∑

q≤Q

1

ϕ(q)

∑
r|q
r 6=1

∑
χ mod r
primitive

∣∣∣∣∣∣
∑

(m,q)=1

α(m)χ(m)

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
∑

(n,q)=1

β(n)χ(n)

∣∣∣∣∣∣ .
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We fix a parameter R and first treat the part with r ≤ R essentially trivially.
Indeed in view of our assumption on β we can estimate

∑
q≤Q

1

ϕ(q)

∑
r|q

1<r≤R

∑
χ mod q
primitive

∣∣∣∣∣∣
∑

(m,s)=1

α(m)χ(m)

∣∣∣∣∣∣︸ ︷︷ ︸
≤M

1
2 ‖α‖2

·

∣∣∣∣∣∣
∑

(n,s)=1

β(n)χ(n)

∣∣∣∣∣∣︸ ︷︷ ︸
�N

1
2 ∆3rτ3(s)·‖β‖2

� ‖α‖2‖β‖2 ·
√
NM∆3

∑
q≤Q

τ3(q)

ϕ(q)

∑
r|q

1<r≤R

r � ‖α‖2‖β‖2 ·
√
NM∆3R2 log(Q)4.

Here we have estimated
∑

r|q
r≤R

r � R2 trivially. Estimating the remaining q-sum

is a good exercise:

∑
q≤Q

τ3(q)

ϕ(q)
≤
∏
p≤Q

(
1 +

∞∑
k=1

τ3(k)

pk(1− 1/p)

)

=
∏
p≤Q

(
1− (1− 1/p)−1 + (1− 1/p)−1

∞∑
k=0

τ3(k)

pk

)
=
∏
p≤Q

(
1− (1− 1/p)−1 + (1− 1/p)−4

)
≤
∏
p≤Q

(1− 1/p)−4.

An application of Mertens’ formula (5) gives

∑
q≤Q

τ3(q)

ϕ(q)
� log(Q)4

as desired.
For the remaining part (i.e. r > R) we want to use the large sieve from

Lemma 3.5. We need some preparations. First note that we have ϕ(q)ϕ(r) ≤
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ϕ(qr).8 We make the following reformulations:

∑
q≤Q

1

ϕ(q)

∑
r|q
r 6=1

∑
χ mod r
primitive

∣∣∣∣∣∣
∑

(m,q)=1

α(m)χ(m)

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
∑

(n,q)=1

β(n)χ(n)

∣∣∣∣∣∣
=

∑
R<r≤Q

∑
q≤Q
r|q

1

ϕ(q)

∑
χ mod r
primitive

∣∣∣∣∣∣
∑

(m,q)=1

α(m)χ(m)

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
∑

(n,q)=1

β(n)χ(n)

∣∣∣∣∣∣
≤

∑
R<r≤Q

∑
q≤Q/r

1

ϕ(q)ϕ(r)

∑
χ mod r
primitive

∣∣∣∣∣∣
∑

(m,q)=1

α(m)χ(m)

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
∑

(n,q)=1

β(n)χ(n)

∣∣∣∣∣∣
≤
∑
q≤Q

1

ϕ(q)

∑
R<r≤Q

1

ϕ(r)

∑
χ mod r
primitive

∣∣∣∣∣∣
∑

(m,q)=1

α(m)χ(m)

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
∑

(n,q)=1

β(n)χ(n)

∣∣∣∣∣∣
At this point we need another trick. We split the r-sum into dyadic pieces. This
is we write ∑

R<r≤Q

=
∑

R<r≤2R

+
∑

2R<r≤4R

+ . . . =
∑

R<P≤Q

dyadic ∑
P<r≤2P

.

Note that the dyadic P -sum has � log(Q) terms. We can write

∑
q≤Q

1

ϕ(q)

∑
r|q
r 6=1

∑
χ mod r
primitive

∣∣∣∣∣∣
∑

(m,q)=1

α(m)χ(m)

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
∑

(n,q)=1

β(n)χ(n)

∣∣∣∣∣∣
≤
∑
q≤Q

1

ϕ(q)

∑
R<P≤Q

dyadic 1

2P

∑
P<r≤2P

r

ϕ(r)

∑
χ mod r
primitive

∣∣∣∣∣∣
∑

(m,q)=1

α(m)χ(m)

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
∑

(n,q)=1

β(n)χ(n)

∣∣∣∣∣∣
≤
∑
q≤Q

1

ϕ(q)

∑
R<P≤Q

dyadic 1

2P

 ∑
P<r≤2P

r

ϕ(r)

∑
χ mod r
primitive

∣∣∣∣∣∣
∑

(m,q)=1

α(m)χ(m)

∣∣∣∣∣∣
2


1
2

·

 ∑
P<r≤2P

r

ϕ(r)

∑
χ mod r
primitive

∣∣∣∣∣∣
∑

(n,q)=1

β(n)χ(n)

∣∣∣∣∣∣
2


1
2

.

8By multiplicativity it is sufficient to check this on prime powers.
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In the last step we have applied Cauchy-Schwarz in order to separate the n and
m-sum. Applying the large sieve in both pieces yields

∑
q≤Q

1

ϕ(q)

∑
r|q
r 6=1

∑
χ mod r
primitive

∣∣∣∣∣∣
∑

(m,q)=1

α(m)χ(m)

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
∑

(n,q)=1

β(n)χ(n)

∣∣∣∣∣∣
�
∑
q≤Q

1

ϕ(q)

∑
R<P≤Q

dyadic 1

P
(P 2 +M)

1
2 (P 2 +N)

1
2‖α‖2‖β‖2

� (P +M
1
2 +N

1
2 + (MN)

1
2R−1) log(Q)2.

The result follows with R = ∆−1. �

We are closing in on being able to prove the Bombieri-Vinogradov Theorem.
The key is Proposition 4.5. In order to apply it we have to write Λ (at least
approximately) as a convolution of two arithmetic functions with the required
properties. This can be done using the following curious identity:

Proposition 4.6 (Vaughan’s Identity). Let z ≥ 1. Then for any n > z we have

Λ(n) =
∑
b|n
b≤z

µ(b) log(
n

b
)−

∑
b|n
b≤z

∑
c|n
b

c≤z

µ(b)Λ(c) +
∑
b|n
b>z

∑
c|n
b

c>z

µ(b)Λ(c).

Proof. Our starting point are the well known identities

Λ(n) =
∑
b|n

µ(b) log(
n

b
) and log(n) =

∑
d|n

Λ(d).

We keep the terms with b ≤ z in the first identity and transform the rest as follows:∑
b|n
b>z

µ(b) log(
n

b
) =

∑
b|n
b>z

∑
c|n
b

µ(b)Λ(c).

Now we keep the part c > z in the c-sum. The rest can be rewritten as∑
b|n
b>z

∑
c|n
b

c≤z

µ(b)Λ(c) =
∑
b|n

∑
c|n
b

c≤z

µ(b)Λ(c)−
∑
b|n
b≤z

∑
c|n
b

c≤z

µ(b)Λ(c)

=
∑
c|n
c≤z

Λ(c)
∑
b|n
c

µ(b)

︸ ︷︷ ︸
=0

−
∑
b|n
b≤z

∑
c|n
b

c≤z

µ(b)Λ(c)

= −
∑
b|n
b≤z

∑
c|n
b

c≤z

µ(b)Λ(c).

Gathering all the pieces concludes the proof. �
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Exercise 4.1. Suppose f(t) = log(t), the we have

|Df (y; q, a)| ≤ 2|f(y)|.

Solution: By partial summation we can write

Df (y; q, a) =

 ∑
n≤y,

n≡a mod q

1− 1

ϕ(q)

∑
n≤y

(n,q)=1

1

 log(y)

−
∫ y

1

 ∑
n≤t,

n≡a mod q

1− 1

ϕ(q)

∑
n≤t

(n,q)=1

1

 dt

t
.

By cutting the sums into intervals [qk + 1, q(k + 1)] we see that only the tail
[qb t

y
c + 1, t] survives. Estimating this contribution trivially completes the argu-

ment. �

We are now ready for the proof of the Bombieri-Vinogradov Theorem:

Proof of Theorem 4.1. We first fix Q ≤ x
1
2 log(x)−B, t ≤ x and z = x

1
5 .9 Note

that B will be chosen later in terms of A. Finally, recall that we need to bound∑
q≤Q

max
(a,q)=1

|DΛ(t; q, a)|.

The result will then follow from Lemma 4.3.
First, for n ≤ t write

Λ(n) = Λ(n) · 1(0,z](n) + Λ(n) · 1(z,t](n).

We can trivially estimate∑
q≤Q

max
(a,q)=1

|DΛ·1(0,z]
(t; q, a)| � zQ log(x)� x

7
10 log(x).

In particular, we have seen that∑
q≤Q

max
(a,q)=1

|DΛ(t; q, a)| �
∑
q≤Q

max
(a,q)=1

|DΛ·1(z,t]
(t; q, a)|+ x

7
10 log(x)

We can now apply Vaughan’s identity (i.e. Proposition 4.6) with z as above to
write

Λ · 1(z,t] = Λ1(n)− Λ2(n) + Λ3(n),

9A lot of other choices for z would work. We fix this one for convenience.
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for

Λ1(n) =
∑
b|n
b≤z

µ(b) log(n/b) = [(µ · 1[1,z]) ∗ log](n),

Λ2(n) =
∑
b|n
b≤z

∑
c|n
b

c≤z

µ(b)Λ(c) = [(Λ · 1[1,z]) ∗ (µ · 1[1,z]) ∗ 1](n) and

Λ3(n) =
∑
b|n
b>z

∑
c|n
b

c>z

µ(b)Λ(c) = [(Λ · 1(z,∞)) ∗ (µ · 1(z,∞)) ∗ 1](n).

Even though we have not indicated this explicitly the functions Λ1, Λ2 and Λ3

appearing in the decomposition are also restricted to n ∈ (z, t].
We continue by estimating the contributions of Λ1 and Λ2. We first bound

DΛ1(t; q, a) =
∑
n≤t

n≡a mod q

∑
b|n
b≤z

µ(b) log(n/b)− 1

ϕ(q)

∑
n≤t

(n,q)=1

∑
b|n
b≤z

µ(b) log(n/b)

=
∑
b≤z

(b,q)=1

µ(b)
∑
m≤ t

b
(m,q)=1

log(m) ·
(
1a+qZ(bm)− 1

ϕ(q)

)

=
∑
b≤z

(b,q)=1

µ(b)Dlog(t/b; q, ab).

Here b is the inverse of b modulo q. Estimating the result using Exercise 4.1 and
summing over Q yields∑

q≤Q

max
(a,q)=1

|DΛ1(t; q, a)| � zQ log(x)� x
7
10 log(x).

We proceed similar to handle the Λ2-part. Indeed, we can write

DΛ2(t; q, a) =
∑
b,c≤z

(bc,q)=1

µ(b)Λ(c)D1

(
t

bc
; q, abc

)
.

An easy observation, which was also used in the solution to Exercise 4.1, yields
D1(t/(bc); q, a)� 1. We obtain

DΛ2(t; q, a)� z2 log(z).

Summing everything over q ≤ Q gives∑
q≤Q

max
(a,q)=1

|DΛ2(t; q, a)| � z2Q log(x)� x
9
10 log(x).
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So far we have seen that∑
q≤Q

max
(a,q)=1

|DΛ(t; q, a)| �
∑
q≤Q

max
(a,q)=1

|DΛ3(t; q, a)|+ x
9
10 log(x)

The remaining task is to handle the Λ3-part. This requires some further prepara-
tion.

We fix δ = log(x)−C . Here C is a suitable parameter that can be chosen in
terms of A later on. Put λ = 1 + δ. We define

αL = [(µ · 1(z,∞)) ∗ 1] · 1(L,λL]

and similarly

βM = Λ · 1(M,λM ].

Our goal is to decompose

Λ3 ≈
∑
L,M

αL ∗ αM .

We first note that since z < n ≤ t we can assume that LM ≤ t but we also have
the individual restrictions z < L,M < t/z. We have written ≈ instead of = above,
because we can do this up to some overlap close to t. Indeed, similar to the dyadic
decompositions used earlier we can take L and M of the shape λj for j ∈ N. We
get

DΛ3(t; q, a) =
∑

z<L,M<t/z
LM≤t

λ−adic
DαL∗βM (t; q, a) +O(q−1δx log(x))

The error comes from estimating the overlaps at the ends of the ranges trivially.
We have used the non-standard notation λ-adic to indicate that L and M are of
the form λj. Note that the L-sum and the M -sum have a combined length � δ2.
We obtain∑

q≤Q

max
(a,q)=1

|DΛ(t; q, a)| �
∑

z<L,M<t/z
LM≤t

λ−adic∑
q≤Q

max
(a,q)=1

|DαL∗βM (t; q, a)|

+ δx log(x)2 + x
9
10 log(x).

We are ready to apply Proposition 4.5 to each of the remaining pieces. Note that
by the Siegel-Walfisz Theorem βM satisfies (4.5) with ∆ = log(x)−D for arbitrary
D.10 By the prime number theorem we can estimate

‖βM‖2
2 � δM log(x)2

10Here we are omitting implicit constants that can depend on D.
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On the other hand we have

‖αL‖2
2 =

∑
L<n≤λL

∣∣∣∣∣∣∣∣
∑
l|n
l>z

µ(l)

∣∣∣∣∣∣∣∣
2

≤
∑

L<n≤λL

τ(n)2 � L log(x)3.

By Proposition 4.5 we obtain∑
q≤Q

max
(a,q)=1

|DαL∗βM (t; q, a)| � (∆
√
LM +

√
L+
√
M +Q)δ

1
2

√
LM log(x)7

� (∆ + z−
1
2 + log(x)−B)x log(x)7.

Where we have used our restrictions on L and M . Summing this up and recalling
that δ = log(x)−C gives∑
q≤Q

max
(a,q)=1

|DΛ(t; q, a)| � (log(x)−D+x−
1
10 +log(x)−B)x log(x)2C+7+x log(x)2−C+x

9
10 log(x).

We easily conclude by taking B, C and D appropriately. �

5. Bounded gaps in primes

We finally turn to the proof of Maynard’s theorem. Among other things our
goal is to proof Theorem 1.5 stated in the introduction. To do so we will closely
follow Maynard’s original argument from [Ma]. Note that a similar result was
independently proven by Tao. Furthermore, Maynard’s results have been refined.
The state of the art and essentially the limit of the method was achieved in an
impressive Polymath Project [Po].

5.1. The Set-Up. Let H = {h1, . . . , hk} be admissible. As in the GPY-method
we consider the sum

S(N, ρ) =
∑

N≤n<2N

(
k∑
i=1

1P(n+ hi)− ρ

)
ωn

for ρ > 0 and non-negative weights ωn. If we can show that S(N, ρ) > 0, then
there is N ≤ n0 < 2N such that

k∑
i=1

1P(n+ hi) > ρ.

We conclude that at least bρ+ 1c of the numbers

n0 + h1, . . . , n0 + hk
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are prime. The new idea that appears in [Ma] is the choice of the sieve weights:

ωn =

 ∑
di|n+hi

λd1,...,dk

2

.

The precise choice of λd1,...,dk will be discussed below.
We will now set up some notation, which we will use for the rest of this section.

Define

D0 = log log log(N) and W =
∏
p≤D0

p.

Note that W � (log log(N))2. Let θ be the level of distribution of the primes and
set

R = N
θ
2
−δ, for δ > 0.

We choose v0 so that v0 + hi is co-prime to W for all i = 1, . . . , k. To see that this
is possible one uses that H is admissible and the Chinese Remainder Theorem.
We will now slightly modify S(N, ρ). Indeed we will actually estimate

Sv0(N, ρ) =
∑

N≤n<2N,
n≡v0 mod W

(
k∑
i=1

1P(n+ hi)− ρ

)
ωn = S2 − ρ · S1 (11)

for

S1 =
∑

N≤n<2N,
n≡v0 mod W

ωn and

S2 =
∑

N≤n<2N,
n≡v0 mod W

(
k∑
i=1

1P(n+ hi)

)
ωn.

Furthermore, we define ωn as in (5.1) with

λd1,...,dk =

(
k∏
i=1

µ(di)di

)
·
∑

r1,...,rk,
di|ri,

(ri,W )=1

µ(
∏k

i=1 ri)
2∏r

i=1 ϕ(ri)
F

(
log(r1)

log(R)
, . . . ,

log(rk)

log(R)

)
. (12)

Here F is a fixed smooth function. Note that if (
∏k

i=1 di,W ) 6= 1, then the
r1, . . . , rk-sum is empty and we define the wn = 0 in this case. We will usually write
d =

∏k
i=1 di. Let us record that the support of the weights λd1,...,dk is restricted to

d1, . . . , dk with the properties:

• d ≤ R;
• (d,W ) = 1; and
• µ(d)2 = 1 (in other words (di, dj) = 1 for i 6= j and di- square free).



ON GAPS BETWEEN PRIMES 26

We will encounter the integrals

Ik(F ) =

∫ 1

0

· · ·
∫ 1

0

F (t1, . . . , tk)
2dt1 · · · dtk and (13)

J
(m)
k (F ) =

∫ 1

0

· · ·
∫ 1

0

(∫ 1

0

F (t1, . . . , tk)dtm

)2

dt1 · · · dtm−1dtm+1 · · · dtk. (14)

5.2. Sieve Manipulations. In this subsection we will prove asymptotic estimates
for the sums S1 and S2. The arguments are generalizations of the original GPY-
arguments.

We define

yr1,...,rk =

(
k∏
i=1

µ(ri)ϕ(ri)

) ∑
d1,...,dk
ri|di

λd1,...,dk
d1 · · · dk

and
ymax = sup

r1,...,rk

|yr1,...,rk |.

Lemma 5.1. We have

S1 =
N

W

∑
r1,...,rk

y2
r1,...,rk∏k
i=1 ϕ(ri)

+O

(
y2
maxϕ(W )kN log(R)k

W k+1D0

)
.

Proof. We start from the definition of S1, open the square and exchange summa-
tion:

S1 =
∑

N≤n<2N,
n≡v0 mod W

 ∑
di|n+hi

λd1,...,dk

2

=
∑

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek
∑

N≤n<2N,
n≡v0 mod W,
[di,ei]|n+hi

1.

We first suppose that the numbers W, [d1, e1], . . . , [dk, ek] are pairwise co-prime.
In this case we define

q = W ·
k∏
i=1

[di, ei].

According to the Chinese Remainder Theorem there is γ such that∑
N≤n<2N,

n≡v0 mod W,
[di,ei]|n+hi

1 =
∑

N≤n<2N,
n≡γ mod q

1 =
N

q
+O(1).

If the integers are not pairwise co-prime, then the inner sum is empty. Recall that
λd1,...,dk is supported on tuple (d1, . . . , dk) with (di, dj) = 1 for i 6= j (i.e. pairwise
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co-prime) and (di,W ) = 1. Thus the condition that W, [d1, e1], . . . , [dk, ek] are
pairwise co-prime boils down to (di, ej) = 1 for i 6= j. We arrive at

S1 =
N

W

∑
d1,...,dk
e1,...,ek

(di,ej)=1 for i 6=j

λd1,...,dkλe1,...,ek
[d1, e1] · · · [dk, ek]

+O


∑

d1,...,dk
e1,...,ek

(di,ej)=1 for i 6=j

|λd1,...,dkλe1,...,ek |

 .

We first look at the error. Put

λmax = sup
d1,...,dk

|λd1,...,dk |

and observe that λd1,...,dk are non-zero only when d1 · · · dk < R. We can therefore
estimate

∑
d1,...,dk
e1,...,ek

(di,ej)=1 for i 6=j

|λd1,...,dkλe1,...,ek | � λ2
max

(∑
d<R

τk(d)

)2

� λ2
maxR

2 log(R)2k.

This turns out to be an acceptable bound.
We return to the main term. The next step is to decouple di and ei appearing

together in the smallest common multiple [di, ei]. To do so we use the basic identity

1

[di, ei]
=

(di, ei)

di · ei
=

1

di · ei

∑
ui|(di,ei)

ϕ(ui).

With this at hand we can write

N

W

∑
d1,...,dk
e1,...,ek

(di,ej)=1 for i 6=j

λd1,...,dkλe1,...,ek
[d1, e1] · · · [dk, ek]

=
N

W

∑
u1,...,uk

ϕ(u1) · · ·ϕ(uk)
∑

d1,...,dk
e1,...,ek,
ui|(di,ei)

(di,ej)=1 for i 6=j

λd1,...,dkλe1,...,ek
d1 · · · dk · e1 · · · ek

.

The remaining conditions (di, ej) = 1 can be detected by

δ(di,ej)=1 =
∑

si,j |(di,ej)

µ(si,j).
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We arrive at

N

W

∑
d1,...,dk
e1,...,ek

(di,ej)=1 for i 6=j

λd1,...,dkλe1,...,ek
[d1, e1] · · · [dk, ek]

=
N

W

∑
u1,...,uk

ϕ(u1) · · ·ϕ(uk)
∑

si,j , i 6=j

 ∏
1≤i,j≤k,
i 6=j

µ(si,j)


·

∑
d1,...,dk
e1,...,ek,
ui|(di,ei)

si,j |(di,ej) for i 6=j

λd1,...,dkλe1,...,ek
d1 · · · dk · e1 · · · ek

.

Due to the support of the weights λd1,...,dk we can make the following simplifying
assumptions. First, we can assume that si,j is co-prime to ui and uj. Similarly we
can restrict our attention to si,j that are co-prime to si,a and sb,j for a 6= j and
b 6= i. We will always make these assumptions in the s∗,∗-sums below.

We now make the following change of variables:

yr1,...,rk =

(
k∏
i=1

µ(ri)ϕ(ri)

)
·
∑

d1,...,dk
ri|di

λd1,...,dk
d1 · · · dk

.

It turns out that we can invert this. Indeed, for d1 · · · dk square free we have

∑
r1,...,rk
di|ri

yr1,...,rk
ϕ(r1) · · ·ϕ(rk)

=
∑
r1,...,rk
di|ri

(
k∏
i=1

µ(ri)

)
·
∑

e1,...,ek
ri|ei

λe1,...,ek
e1 · · · ek

=
∑

e1,...,ek

λe1,...,ek
e1 · · · ek

∑
r1,...,rk
di|ri
ri|ei

k∏
i=1

µ(ri) =
λd1,...,dk

µ(d1) · · ·µ(dk)d1 · · · dk

(15)

by Möbius inversion. We put

ymax = sup
r1,...,rk

|yr1,...,rk |.
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Recall that for square free d we have11

d

ϕ(d)
=
∑
e|d

1

ϕ(e)
.

Set r′ =
∏k

i=1
ri
di

. We compute the relation between λmax and ymax:

λmax ≤ sup
d1,...,dk∏k
i=1 di �-free

ymax

(
k∏
i=1

di

)
·

∑
r1,...,rk
di|ri

r1···rk<R
r1···rk �-free

(
k∏
i=1

µ(ri)
2

ϕ(ri)

)

≤ ymax sup
d1,...,dk∏k
i=1 di �-free

(
k∏
i=1

di
ϕ(di)

) ∑
r′≤R/

∏k
i=1 di

(r′,d1···dk)=1

µ(r′)τk(r
′)

ϕ(r′)

≤ ymax sup
d1,...,dk

∑
d|
∏k
i=1 di

µ(d)2

ϕ(d)

∑
r′≤R/

∏k
i=1 di

(r′,d1···dk)=1

µ(r′)τk(r
′)

ϕ(r′)

≤ ymax ·
∑
u<R

µ(u)2τk(u)

ϕ(u)
� ymax · log(R)k.

In particular, we can replace the error termO(λ2
maxR

2 log(R)2k) byO(y2
maxR

2 log(R)4k).
Inserting everything back in our formula for S1 leads to

S1 =
N

W

∑
u1,...,uk

(
k∏
i=1

ϕ(ui)

)

·
∑
si,j i 6=j

 ∏
1≤i,j≤k
i 6=j

µ(si,j)

 ·
(

k∏
i=1

µ(ai)µ(bi)

ϕ(ai)ϕ(bi)

)
ya1,...,akyb1,...,bk

+O(y2
maxR

2 log(R)4k)

Here we use

aj = uj
∏
i 6=j

sj,i and bj = uj
∏
i 6=j

si,j.

11This is easily verified for d prime. Since both sides are multiplicative we obtain the general
formula immediately.
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Note that in order to make the formulation above correct we use the restrictions
in the si,j-sum, which we discussed above. We can further rewrite this as

S1 =
N

W

∑
u1,...,uk

(
k∏
i=1

µ(ui)
2

ϕ(ui)

)

·
∑
si,j i 6=j

 ∏
1≤i,j≤k
i 6=j

µ(si,j)

ϕ(si,j)2

 · ya1,...,akyb1,...,bk +O(y2
maxR

2 log(R)4k)

Note that the support of ya1,...,ak allows us to assume that (si,j,W ) = 1. Thus, we
can either have si,j = 1 or si,j > D0.

If there is one tuple (i, j) (with i 6= j) with one si,j > D0, then we can estimate
the corresponding contribution trivially by

� y2
max

N

W

 ∑
u<R

(u,W )=1

µ(u)2

ϕ(u)


k ∑

si,j>D0

µ(si,j)
2

ϕ(si,j)2

 ·(∑
s≥1

µ(s)2

ϕ(s)2

)k2−k−1

� y2
max

ϕ(W )kN log(R)k

W k+1D0

. (16)

Here we used Lemma 2.4 to estimate the u-sum.
Thus, the main contribution comes from si,j = 1 for all i 6= j. We simply have

S1 =
N

W

∑
u1,...,uk

y2
u1,...,uk∏k
i=1 ϕ(ui)

+O

(
y2

max

ϕ(W )kN log(R)k

W k+1D0

+ y2
maxR

2 log(R)4k

)
.

Recall that R2 = N θ−2δ ≤ N1−2δ and W � N δ, so that the second error term is
absorbed into the first. This completes the proof. �

We turn towards S2. First, decompose

S2 =
k∑

m=1

S
(m)
2 (17)

for

S
(m)
2 =

∑
N≤n<2N,

n≡v0 mod W

1P(n+ hm)

 ∑
d1,...,dk
di|(n+hi)

λd1,...,dk


2

.
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We define a completely multiplicative function g by setting g(p) = p−2 and define

y(m)
r1,...,rk

=

(
k∏
i=1

µ(ri)g(ri)

)
·
∑

d1,...,dk
ri|di
dm=1

λd1,...,dk
ϕ(d1) · · ·ϕ(dk)

. (18)

Finally set y
(m)
max = supr1,...,rk |y

(m)
r1,...,yk |. Towards the evaluation of S

(m)
2 we obtain

Lemma 5.2. For any A > 0 we have

S
(m)
2 =

N

ϕ(W ) log(N)
·
∑
r1,...,rk

(y
(m)
r1,...,rk)

2

g(r1 · · · rk)
+O

(
(y

(m)
max)2ϕ(W )k−2N log(N)k−2

W k−1D0

)

+O

(
y2

maxN

log(N)A

)
.

Proof. As earlier we start by opening the square and exchanging order of summa-
tion:

S
(m)
2 =

∑
d1,...,dk
e1,...,dk

λd1,...,dkλe1,...,ek
∑

N≤n<2N
n≡v0 mod W
[di,ei]|(n+hi)

1P(n+ hm).

As before put q = W
∏k

i=1[di, ei]. If W, [d1, e1], . . . , [dk, ek] are pairwise co-prime
and dm = em = 1, then we can write∑
N≤n<2N

n≡v0 mod W
[di,ei]|(n+hi)

1P(n+ hm) =
∑

N≤n<2N
n≡γ mod q

1P(n+ hm) =
1

ϕ(q)

∑
N≤n<2N

1P(n)︸ ︷︷ ︸
=XN

+O(E(N, q)).

for

E(N, q) = 1 + sup
(γ,q)=1

∣∣∣∣∣∣∣∣
∑

N≤n<2N
n≡γ mod q

1P(n)− XN

ϕ(q)

∣∣∣∣∣∣∣∣ .
If W, [d1, e1], . . . , [dk, ek] are not pairwise co-prime, then the inner sum simply van-
ishes. Recall that, due to the support of λd1,...,dk we can assume that di and ei are
�-free. In this case the co-primality condition reduces to (di, ej) = 1 for i 6= j.
We obtain

S
(m)
2 =

XN

ϕ(W )

∑
d1,...,dk
e1,...,ek

(di,ej)=1 i 6=j
em=dm=1

λd1...,dkλe1,...,ek
ϕ([d1, e1] · · · [dk, ek])

+O

 ∑
d1,...,dk
e1,...,ek

|λd1...,dkλe1,...,ek | · E(N, q)

 .

We focus on estimating the error. First note that for a square-free integer r there
are at most τ3k(r) possibilities for d1, . . . , dk, e1, . . . , dk with W [d1, e1] · · · [dk, ek] =
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r. Furthermore, by exploiting the support of λd1,...,dk we find that q ≤ R2W . After
recalling that λmax � ymax · log(R)k we can estimate the error by∑

d1,...,dk
e1,...,ek

|λd1...,dkλe1,...,ek | · E(N, q)� y2
max log(R)2k

∑
r<R2W

µ(r)2τ3k(r)E(N, r)

�

( ∑
r<R2W

µ(r)2τ3k(r)
2E(N, r)

) 1
2
( ∑
r<R2W

E(N, r)

) 1
2

.

Here we have used Cauchy-Schwarz. The first sum can be treated by estimating
E(N, r)� N

ϕ(r)
trivially. Indeed this gives a contribution of

∑
r<R2W

µ(r)2τ3k(r)
2E(N, r)� N

∑
r<R2W

µ(r)2

ϕ(r)
τ3k(r)

2

�

 ∑
d≤R2W

µ(r)2

ϕ(r)

9k2

� log(R2W )9k2 � log(N)9k2 .

To treat the second one we use that the primes have level of distribution θ. Indeed,
by choice of R we have

R2W � N θ−2δ log log(N).

Thus, for any A′ > 0 we get

∑
r<R2W

E(N, r)� N

log(N)A′
.

All together we have obtained

∑
d1,...,dk
e1,...,ek

|λd1...,dkλe1,...,ek | · E(N, q)� y2
max

N

log(N)A′/2−9k2/2
.

We are done after choosing A′ appropriately in terms of A and k.
We turn towards the main term. Here we will start as in the proof of Lemma 5.1

and use similar notation. For square-free di, ei we have

1

ϕ([di, ei])
=

1

ϕ(di)ϕ(ei)

∑
ui|(di,ei)

g(ui).
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This is again easily verified on primes.12 So far we can write

S
(m)
2 =

XN

ϕ(W )

∑
u1,...,uk

(
k∏
i=1

g(ui)

) ∑
si,j i 6=j

 ∏
1≤i,j≤k
i 6=j

µ(si,j)


·

∑
d1,...,dk
e1,...,ek
ui|(di,ei)

si,j |(di,ej) i 6=j
dm=em=1

λd1,...,dkλe1,...,ek∏k
i=1 ϕ(di)ϕ(ei)

+O

(
y2

max

N

log(N)A

)
.

At this point we can substitute yr1,...,rk and obtain

S
(m)
2 =

XN

ϕ(W )

∑
u1,...,uk

(
k∏
i=1

µ(ui)
2

g(ui)

) ∑
si,j i 6=j

 ∏
1≤i,j≤k
i 6=j

µ(si,j)

g(si,j)2

 · ya1,...,akyb1,...,bk
+O

(
y2

max

N

log(N)A

)
,

for aj = uj
∏

i 6=j sj,i and bj = uj
∏

si,j
.13

The contributions with si,j 6= 1 for some some tuple (i, j) with i 6= j, can be
estimated trivially as in (16) above. The corresponding error is

O

(
(y

(m)
max)2ϕ(W )k−2N log(R)k−1

W k−1D0 log(N)

)
.

Note that we get slightly different powers because we have the additional constraint
um = 1. Furthermore, we have to replace the estimate from Lemma 2.4 with∑

u�R
(u,W )=1

µ(u)2

g(u)
� ϕ(W )

W
log(R),

12If (di, ei) = 1, then the formula is true by multiplicativity of $. For ei = di = p we have

1

ϕ([p, p])
=

1

ϕ(p)
=

1

p− 1

and on the other hand
1

ϕ(p)ϕ(p)

∑
d|(p,p)

g(d) =
1 + p− 2

(p− 1)2
=

1

p− 1
.

The general case can easily be deduced similarly.
13Note that as in the proof of Lemma 5.1 we are using that the numbers contributing to the

si,j-sums satisfy certain co-primality conditions, such as (si,j ,W ) = 1 for example. In particular
2 - si,j so that g(2) = 0 is no issue for the formula presented above.
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which is easy to prove.
Thus we have

S
(m)
2 =

XN

ϕ(W )

∑
u1,...,uk

(y
(m)
u1,...,uk)

2

g(u1 · · ·uk)
+O

(
(y

(m)
max)2ϕ(W )k−2N log(R)k−2

W k−1D0

)

+O

(
y2

max

N

log(N)A

)
.

We conclude the proof by the prime number theorem:

XN =
N

log(N)
+O

(
N

log(N)2

)
.

The error term produced this way is easily seen to be negligible. �

The next result establishes the link between yr1,...,rk that appear in our evaluation

of S1 and the weights y
(m)
r1,...,rk encountered here.

Lemma 5.3. For rm = 1 we have

y(m)
r1,...,rk

=
∑
am

yr1,...rm−1,am,rm+1,...,rk

ϕ(am)
+O

(
ymaxϕ(W ) log(R)

WD0

)
.

Proof. We combine the definition of y
(m)
r1,...,rm (see (18)) with the change of variables

(15). This yields

y(m)
r1,...,rk

=

(
k∏
i=1

µ(ri)g(ri)

)
·
∑

d1,...,dk
ri|di
dm=1

(
µ(di)di
ϕ(di)

)
·
∑

a1,...,ak
di|ai

ya1,...,ak
ϕ(a1) · · ·ϕ(ak)

.

The only available move is to interchange the sums. We get

y(m)
r1,...,rk

=

(
k∏
i=1

µ(ri)g(ri)

)
·
∑

a1,...,ak
ri|ai

ya1,...,ak
ϕ(a1) · · ·ϕ(ak)

·
∑

d1,...,dk
di|ai, ri|di
dm=1

k∏
i=1

µ(di)di
ϕ(di)

.

The di-sums can be evaluated exactly and we get

y(m)
r1,...,rk

=

(
k∏
i=1

µ(ri)g(ri)

)
·
∑

a1,...,ak
ri|ai

ya1,...,ak
ϕ(a1) · · ·ϕ(ak)

∏
i 6=m

µ(ai)ri
ϕ(ai)

.

(Note that the dm-sum is trivial!) At this point we observe that the support of
ya1,...,ak allows us to assume that (aj,W ) = 1. But this implies that either aj = rj
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or aj > D0rj. If aj 6= rj for some j 6= m, then we can estimate everything trivially
by

� ymax

(
k∏
i=1

g(ri)ri

) ∑
aj>D0rj
rj |aj

µ(aj)
2

ϕ(aj)2


 ∑

am<R
(am,W )=1

µ(am)2

ϕ(am)

 ∏
1≤i≤k
i 6=j,m

(
µ(ai)

2

ϕ(ai)2

)

� ymax

(
k∏
i=1

g(ri)ri
ϕ(ri)2

)
ϕ(W ) log(R)

WD0

� ymax
ϕ(W ) log(R)

WD0

.

We conclude that the only relevant contribution comes from aj = rj for all j 6= m.
More precisely

y(m)
r1,...,rk

=

(
k∏
i=1

g(ri)ri
ϕ(ri)2

)
·
∑
am

ya1,...,ak
ϕ(am)

+O

(
ymax

ϕ(W ) log(R)

WD0

)
.

Except for the first product this is exactly what we want. To finish the proof we
observe that

g(p)p

ϕ(p)2
=
p(p− 2)

(p− 1)2
= 1 +O(p−2).

Thus, taking (ri,W ) = 1 into account yields

k∏
i=1

g(ri)ri
ϕ(ri)2

= 1 +O(D−1
0 ).

Inserting this and observing that error is negligible completes the proof. �

The next step is to make a meaningful Ansatz for the choice of the weights
y. This choice should maximize S2/S1 (or at least the main terms thereof). On
can arrive at a reasonable guess, which is most likely close to optimal, by using
Lagrangian multipliers. We will not go into this and only make the following
ad-hoc definition.

Let F : Rk → R be a smooth function with support in

Rk = {(x1, . . . , xk) ∈ [0, 1]k :
k∑
i=1

xi ≤ 1}.

Then we set

yr1,...,rk =

{
F ( log(r1)

log(R)
, . . . , log(rk)

log(R)
) if (r,W ) = 1 and µ(r) 6= 0,

0 else,
(19)

where we write r = r1 · · · rk. This choice gives the weights λd1,...,dk indicated in
(12). It will be useful to introduce the Sobolev norms

‖G‖Wk,∞(Ω) = max
|α|≤k

sup
x∈Ω
| ∂
|α|

∂xα
G(x)|,
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where G : Ω→ C is smooth and Ω ⊆ Rn.
We will require some further lemmata before we can come to the main result of

this subsection.

Lemma 5.4. Let A1, A2, L > 0. Let γ be a multiplicative function such that

0 ≤ γ(p)

p
≤ 1− A1 (20)

and

− L ≤
∑
w≤p≤z

γ(p) log(p)

p
− log(

z

w
) ≤ A2 (21)

for any 2 ≤ w ≤ z. Define the completely multiplicative function g by setting

g(p) = γ(p)
p−γ(p)

. Then, for a smooth function G : [0, 1]→ R, we have∑
d<z

µ(d)2g(d)G

(
log(d)

log(z)

)
= S log(z)

∫ 1

0

G(x)dx+OA1,A2(SL · ‖G‖W 1,∞([0,1])),

where

G =
∏
p

(
1− γ(p)

p

)−1(
1− 1

p

)
.

This is a standard result in sieve theory and a detailed proof can be found
in [HR, Chapter 5]. Note that in loc. cit. the condition stated in (20) is referred
to as Ω1 while the condition from (21) is called Ω(1, L).

Proof. We first aim to convince ourselves that the product G is absolutely conver-
gent. To do so we will prove that∏

z≤p<w

(
1 +

g(p)

ps

)(
1− 1

ps+1

)
= 1 +O

(
1

log(z)

)
uniformly in s ≥ 0. (22)

Indeed, noting

1 + g(p) =

(
1− γ(p)

p

)−1

,

taking s = 0 and letting w go to ∞ gives the tail bound∏
p≥z

(
1− γ(p)

p

)−1(
1− 1

p

)
= 1 +O

(
L

log(z)

)
(23)

This shows convergence of G. Establish (22) relies on the two inequalities∑
z≤p<w

g(p)2 = O

(
1

log(z)

)
and (24)

∑
z≤p<w

g(p)

ps
−
∑
z≤p<w

1

ps+1
= O

(
L

log(z)

)
(25)
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These are both straight forward consequences of (20) and (21) and we leave the
proof as an exercise.14 Finally we recall the Taylor expansion of the logarithm:

log(1 + x) = x+O(x2). (26)

This gives

log

[ ∏
z≤p<w

(
1 +

g(p)

ps

)(
1− 1

ps+1

)]

=
∑
z≤p<w

g((p)

ps
−
∑
z≤p<w

1

ps+1
+O

( ∑
z≤p<w

(g(p)2 + p−2)

)

= O

(
L

log(z)

)
,

where we used (24) and (25) in the last step. We arrive at (22) by exponentiation.
Next we define

S(z) =
∑
d<z

µ(d)2g(d).

Our next goal is to show that15

S(z) = G log(z) +O(GL). (27)

We start proving (27) with some elementary observations. First, put

Sp(z) =
∑
d<z

(d,p)=1

µ(d)2g(d).

For p < z we compute

S(z) =
∑
d<z

(d,p)=1

µ(d)2g(d) +
∑
d<z
p|d

µ(d)2g(d) = Sp(z) + g(p)Sp(z/p).

Using this expression and the definition of g yields(
1− γ(p)

p

)
S(z) = Sp(z)− γ(p)

p
(Sp(z)− Sp(z/p)) .

This can be rewritten as

Sp(z/p) =

(
1− γ(p)

p

)
S(z/p) +

γ(p)

p

(
Sp(z/p)− Sp(z/p2)

)
. (28)

We can now study the sum∑
d<z

µ(d)2g(d) log(d) =
∑
d<z

µ(d)2g(d)
∑
p|d

log(p) =
∑
p<z

g(p) log(p)Sp(z/p).

14See Remark 5.5 below for a sketch of the solution.
15This is essentially the content of [HR, Lemma 5.4].



ON GAPS BETWEEN PRIMES 38

Inserting (28) gives∑
d<z

µ(d)2g(d) log(d) =
∑
p<z

γ(p) log(p)

p

∑
d<z/p

µ(d)2g(d)

+
∑
p<z

g(p)γ(p)

p
log(p)

∑
z/p2≤d<z/p

(d,p)=1

µ(d)2g(d)

=
∑
d<z

µ(d)2g(d)
∑
p<z/d

γ(p) log(p)

p

+
∑
d<z

µ(d)2g(d)
∑

√
z/d≤p<z/d

p-d

g(p)γ(p)

p
log(p).

We see that our assumption (21) can be written as∑
p<y

γ(p) log(p)

p
= log(y) +O(L).

On the other one can deduce from (20) and (21) that16∑
√
z/d≤p<z/d

p-d

g(p)γ(p)

p
log(p)�

∑
√
z/d≤p<z/d

g(p)� 1. (29)

In particular we get∑
d<z

µ(d)2g(d) log(d) =
∑
d<z

µ(d)2g(d) log(z/d) +O (LS(z)) . (30)

On the other hand we can use partial summation (i.e. (9)) to see that∑
d<z

µ(d)2g(d) log(d) = S(z) log(z)−
∫ z

1

S(t)
dt

t
.

We define

T (z) =

∫ z

1

S(t)
dt

t

and observe that by partial summation (i.e. (9)) we have

T (z) =
∑
s<z

µ(d)2g(d) log
(z
d

)
.

16This is a byproduct of the solution to the exercise posed earlier in this proof. See Remark 5.5
for details.
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We can thus write (30) as

S(z) log(z) = 2T (z) + S(z) log(z) · r(z),

where r(z)� L
log(z)

is some error, which we think of as small.17 We write this as

S(z) =
1

1− r(z)

2

log(z)
T (z) and E(y) = log

(
2

log(y)2
T (y)

)
.

By differentiating E we get

E ′(y) = − 2

log(y)y
+

S(y)

yT (y)
= − 2

log(y)y
+

1

1− r(y)

2

y log(y)

=
2

y log(y)

r(y)

1− r(y)
� L

y log(y)2
.

We conclude that the integral ∫ ∞
z

E ′(y)dy

is convergent. We conclude that

2

log(z)2
T (z) = exp(E(z)) = C · exp

(
−
∫ ∞
z

E ′(y)dy

)
= C ·

(
1 +O

(
L

log(z)

))
.

We rewrite this as

T (z) =
C

2
log(z)2

(
1 +O

(
L

log(z)

))
.

Since
1

1− r(z)
= 1 +

r(z)

1− r(z)
= 1 +O

(
L

log(z)

)
we deduce

S(z) = C · log(z)

(
1 +O

(
L

log(z)

))
.

It remains to determine the constant C. To do so we recall∫ ∞
1

log(y)λ−1

ys+1
dy =

1

sλ

∫ ∞
0

e−ttλ−1dt =
Γ(λ)

sλ
for λ, s > 0.

Furthermore,∏
p

(
1 +

g(p)

ps

)
=
∞∑
d=1

µ(d)2g(d)

ds
= s

∫ ∞
1

S(y)

ys+1
dy for s > 0.

Combining this with our previous result gives∏
p

(
1 +

g(p)

ps

)
= C · s

∫ ∞
1

log(y) +O(L)

ys−1
dy =

C

s
+O(L).

17The opposite case is handled by a separate argument. See Remark 5.6 for a sketch.
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We conclude that

C = lim
s→0

s
∏
p

(
1 +

g(p)

ps

)
.

Recall that for s > 0 we can define the Riemann zeta function by its Euler product

ζ(1 + s) =
∏
p

(
1

1− p−1−s

)
.

On the other hand it is well known that

1 = lim
s→0

sζ(1 + s).

Inserting this yields

C = lim
s→0

∏
p

(
1 +

g(p)

ps

)(
1− 1

ps+1

)
=
∏
p

(
1− γ(p)

p

)−1(
1− 1

p

)
= G.

This concludes the proof of (27).
Finally we upgrade (27) to the desired statement by partial summation. This is

an easy application of (9). Indeed we get∑
d<z

µ(d)2g(d)G

(
log(d)

log(z)

)
= S(z)G(1)−

∫ z

1

S(t)G′
(

log(t)

log(z)

)
dt

t log(z)
.

Inserting (27) and estimating the error trivially yields∑
d<z

µ(d)2g(d)G

(
log(d)

log(z)

)
= G log(z)G(1)−G

∫ z

1

log(t)

log(z)
G′
(

log(t)

log(z)

)
dt

t

+O
(
GL‖G‖W 1,∞([0,1])

)
.

We now make a change of variables log(t) = s log(z), which yields∑
d<z

µ(d)2g(d)G

(
log(d)

log(z)

)
= G log(z)G(1)−G log(z)

∫ 1

0

sG′(s)ds+O
(
GL‖G‖W 1,∞([0,1])

)
.

We are done by partial integration in the s-integral. �

Remark 5.5. Let us sketch the parts of the argument from the proof of Lemma 5.4
that were left as an exercise. First, by applying partial summation to (21) one
obtains ∑

z≤p<w

γ(p)

p
= log

(
log(w)

log(z)

)
+O

(
L

log(z)

)
and

∑
z≤p<w

γ(p)

p log(p)
� L

log(z)
.
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In particular we have γ(p)
p
� log(p)−1. On the other hand (20) implies g(p) �

γ(p)/p. This allows us to conclude that∑
z≤p<w

γ(p)g(p)

p
�

∑
z≤p<w

γ(p)

p log(p)
� L

log(z)
. (31)

After observing that

g(p) =
γ(p)

p
+
γ(p)

p
g(p)

we conclude that ∑
z≤p<w

g(p) = log

(
log(w)

log(z)

)
+

(
L

log(z)

)
. (32)

Note that this already implies (29).
Recall that a version of Mertens’ formula reads∑

z≤p<w

1

p
= log

(
log(w)

log(z)

)
+O

(
1

log(z)

)
.

(One can compare this to (5).) This allows us to write (32) as∑
z≤p<w

g(p)−
∑
z≤p<w

1

p
� L

log(z)
.

One obtains (25) uniformly in s by another application of partial summation.Finally,
since g(p)2 � γ(p)g(p)p−1m we see that (24) follows directly from (31).

Remark 5.6. Here we will discuss the situation log(z)� L. In this case the error
r(z) appearing in the proof above is potentially large and another argument is
required. We define

W (z) =
∏
p<z

(
1− γ(p)

p

)
and V (z) =

∏
p<z

(
1− 1

p

)
.

From (23) and Mertens’ formula (see (5)) we obtain

W (z)−1 = Geγ log(z)

(
1 +O

(
L

log(z)

))
� GL.

We note that in (27) the error term dominates. In particular it is sufficient to
show that

S(z)� W (z)−1.

But this is easy to see. Indeed, if we define P (z) =
∏

p<z p, then we can observe
that

S(z) =
1

W (z)
−
∑
d≥z
p|P (z)

µ(d)2g(d).
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Dropping the negative terms directly yields S(z) ≤ W (z)−1 as desired.

Lemma 5.7. Let F : Rk → R be a smooth function and define the weights yr1,...,rk
by (19). Then we have

S1 =
ϕ(W )kN log(R)k

W k+1
Ik(F ) +O

(
ϕ(W )kN log(R)k)

W k+1D0

‖F‖2
W 1,∞(Rk)

)
,

where Ik(F ) is as in (13).

Proof. We start by inserting the formula (19) into the asymptotic expansion from
Lemma 5.1. Doing so we obtain

S1 =
N

W

∑
u1,...,uk

(ui,uj)=1
(ui,W )=1

(
k∏
i=1

µ(ui)
2

ϕ(ui)

)
F

(
log(u1)

log(R)
, . . . ,

log(uk)

log(R)

)2

+O

(
ϕ(W )kN log(R)k)

W k+1D0

‖F‖2
W 1,∞(Rk)

)
.

If we drop the condition (ui, uj) = 1, then we introduce an error

� ‖F‖2
W 1,∞(Rk)

N

W

∑
p>D0

∑
u1,...,uk<R
p|(ui,uj)
(ui,W )=1

k∏
i=1

µ(ui)
2

ϕ(ui)

� ‖F‖2
W 1,∞(Rk)

N

W

∑
p>D0

1

(p− 1)2

 ∑
u<R

(u,W )=1

µ(u)2

ϕ(u)


k

� ϕ(W )kN log(R)k

W k+1D0

‖F‖2
W 1,∞(Rk).

So far we have seen that

S1 =
N

W

∑
u1,...,uk

(ui,W )=1

(
k∏
i=1

µ(ui)
2

ϕ(ui)

)
F

(
log(u1)

log(R)
, . . . ,

log(uk)

log(R)

)2

+O

(
ϕ(W )kN log(R)k)

W k+1D0

‖F‖2
W 1,∞(Rk)

)
.

This remaining sum is evaluated using Lemma 5.4 for each variable ui separately.
In each application we take γ(p) = δp-W , z = R and

L� 1 +
∑
p|W

log(p)

p
� log(D0).
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Note that with this choice

S =
∏
p|W

(1− 1

p
) =

ϕ(W )

W
.

As a result we get

∑
u1,...,uk

(ui,W )=1

(
k∏
i=1

µ(ui)
2

ϕ(ui)

)
F

(
log(u1)

log(R)
, . . . ,

log(uk)

log(R)

)2

=
ϕ(W )k

W k
log(R)kIk(F ) +O

(
ϕ(W )k log(R)k−1 log(D0)

W k
‖F‖2

W 1,∞(Rk)

)
.

Inserting this above gives the desired estimate. �

Lemma 5.8. Let F : Rk → R be a smooth function and define the weights yr1,...,rk
by (19). Then we have

S
(m)
2 =

ϕ(W )kN log(R)k+1

W k+1 log(N)
J

(m)
k (F ) +O

(
ϕ(W )kN log(R)k)

W k+1D0

‖F‖2
W 1,∞(Rk)

)
,

for J
(m)
k as in (14).

Proof. The first step is to estimate y
(m)
r1,...,rk . In view of the support properties of

y
(m)
r1,...,rk we can assume that rm = 1, (r,W ) = 1 and µ(r) 6= 0 (for r = r1 · · · rk).

Recall the result from Lemma 5.3 and substitute our choice of yr1,...,rk . We get

y(m)
r1,...,rk

=
∑

(u,Wr)=1

µ(u)2

ϕ(u)
F

(
log(r1)

log(R)
, . . . ,

log(rm−1)

log(R)
,

log(u)

log(R)
,
log(rm+1)

log(R)
, . . . ,

log(rk)

log(R)

)

+O

(
ϕ(W ) log(R)

WD0

‖F‖W 1,∞(Rk)

)
.

We deduce that

y(m)
max �

ϕ(W ) log(R)

W
‖F‖W 1,∞(Rk).

Next we define γ(p) = δ(p,Wr)=1 so that

S =
∏
p

(
1− γ(p)

p

)−1

(1− 1

p
) =

ϕ(Wr)

Wr
.

Further, choose suitable constants A1, A2 and

L� 1 +
∑
p|Wr

log(p)

p
�

∑
p<log(R)

log(p)

p
+

∑
p|Wr,

p>log(R)

log log(R)

log(R)
� log log(N).
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Applying Lemma 5.4 yields

y(m)
r1,...,rk

= log(R)
ϕ(W )

W

(
k∏
i=1

ϕ(ri)

ri

)
F (m)
r1,...,rk

+O

(
ϕ(W ) log(R)

WD0

‖F‖W 1,∞(Rk)

)
with

F (m)
r1,...,rk

=

∫ 1

0

F

(
log(r1)

log(R)
, . . . ,

log(rm−1)

log(R)
, tm,

log(rm+1)

log(R)
, . . . ,

log(rk)

log(R)

)
dtm.

This expression for y
(m)
r1,...,rk holds whenever it is non-zero. Inserting it in Lemma 5.2

reveals

S
(m)
2 =

Nϕ(W ) log(R)2

W 2 log(N)

∑
r1,...,rk

(ri,W )=1
(ri,rj)=1 i 6=j

rm=1

(
k∏
i=1

µ(ri)
2ϕ(ri)

2

g(ri)r2
i

)
(F (m)

r1,...,rk
)2

+O

(
ϕ(W )kN log(R)k

W k+1D0

‖F‖2
W 1,∞(Rk)

)
.

As in the proof of Lemma 5.7 we remove the condition (ri, rj) = 1 for i 6= j. This
introduces an acceptable error. The remaining sum will be evaluated once again
using Lemma 5.4. This time we use

γ(p) = δ(p,W )=1 ·
(

1− p2 − 3p+ 1

p3 − p2 − 2p+ 1

)
and

L� 1 +
∑
p|W

log(p)

p
� log(D0).

We obtain

S
(m)
2 =

ϕ(W )kN log(R)k+1

W k+1 log(N)
J

(m)
k +O

(
ϕ(W )kN log(N)k

W k+1D0

‖F‖2
W 1,∞(Rk)

)
as desired. �

Let us summarize the results obtained in this section:

Proposition 5.9 (Proposition 4.1, [Ma]). Suppose the primes have level of distri-
bution θ > 0 and let R = N θ/2−δ for some small fixed δ > 0. Let F : Rk → R be a
smooth function and define the weights λd1,...,dk as in (12). Then we have

S1 = (1 + o(1)) · ϕ(W )kN log(R)k

W k+1
· Ik(F ) and

S2 = (1 + o(1)) · ϕ(W )kN log(R)k+1

W k+1 log(N)
·

k∑
m=1

J
(m)
k (F ),
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where Ik(F ) (resp. J
(m)
k (F )) is defined as in (13) (resp. (14)).

Proof. This is a direct consequence of Lemma 5.7 and Lemma 5.8 above. �

5.3. Choosing the smooth weight. At this point we have arrived at a purely
analytic problem of choosing the smooth fixed function F optimally. This is an
interesting and not to difficult optimization problem.

Recall the integrals Ik(F ) and J
(m)
k (F ) defined in (13) and (14) above:

Ik(F ) =

∫ 1

0

· · ·
∫ 1

0

F (t1, . . . , tk)
2dt1 · · · dtk and

J
(m)
k (F ) =

∫ 1

0

· · ·
∫ 1

0

(∫ 1

0

F (t1, . . . , tk)dtm

)2

dt1 · · · dtm−1dtm+1 · · · dtk.

We let Sk denote the set of Riemann-integrable functions F : [0, 1]k → R with

support in Rk such that Ik(F ) 6= 0 and J
(m)
k (F ) 6= 0. Define

Mk = sup
F∈Sk

∑k
m=1 J

(m)
k (F )

Ik(F )
. (33)

The goal of this section is to establish the following:

Proposition 5.10 (Proposition 4.3, [Ma]). For k ∈ N we have

(1) M5 > 2;
(2) M105 > 4; and
(3) Mk > log(k)− 2 log log(k)− 2 for k sufficiently large.

Proving this will take up the rest of the section. Before diving into the argument
let us make the following general remarks.

(1) Let Gi : Rk → (0,∞) be such that
∫ 1

0
Gi(t1, . . . , tk)dti ≤ 1, then we have

Mk ≤ sup
(t1,...,tk)∈Rk

k∑
i=1

Gi(t1, . . . , tk)
−1. (34)

This is seen by an easy application of Cauchy-Schwarz.
(2) Using (34) with Gi(t1, . . . , tk) = k−1

log(k)
· 1

1−t1−...−tk+kti
yields

Mk ≤
k

k − 1
log(k).

For k = 2 one can actually solve the optimization problem and obtain

M2 =
1

1−W (1/e)
= 1, 38593 . . . .
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(3) We define the operator L : Sk → Sk by

[LF ](t1, . . . , tk) =
k∑
i=1

∫ 1

0

F (t1, . . . , t
′
i, . . . , tk)dt

′
i.

If F is an eigenfunction of L with positive eigenvalue λ (i.e. LF = λF ),
then λ = Mk. Using (34) with

Gi(t1, . . . , tk) = F (t1, . . . , tk)

(∫ ∞
0

F (t1, . . . , t
′
i, . . . , tk)dt

′
i

)−1

yields the inequality Mk ≤ λ. On the other hand we can compute

λIk(F ) = λ〈F, F 〉 = 〈LF, F 〉 =
k∑

m=1

J
(m)
k (F ),

so that Mk ≥ λ.

We first consider the case when k is large. Here we make the following Ansatz:

F (t1, . . . , tk) =

{∏k
i=1 g(kt1) if (t1, . . . , tk) ∈ Rk,

0 else.

for a function g : R≥0 → R supported in [0, T ]. Note that this choice makes F
symmetric, so that

k∑
m=1

J
(m)
k (F ) = k · J (1)

k (F ).

We also define

γ =

∫
R≥0

g(u)2du and µ =

∫
R≥0

ug(u)2du∫
R≥0

g(u)2
.

Finally we make the following assumption concerning the center of mass of g:

µ < 1− T

k
. (35)

We first record the trivial estimate

Ik(F ) =

∫
· · ·
∫

Rk

F (t1, . . . , tk)
2dt1 · · · dtk ≤

(∫
R≥0

g(kt)2dt

)k

= k−kγk. (36)

Next we turn towards giving lower bounds for J
(1)
k (F ). By positivity we can

estimate

J
(1)
k (F ) ≥

∫
· · ·
∫

t2,...,tk≥0
t2+...+tk≤1−T/k

(∫ T/k

0

k∏
i=1

g(kti)dt1

)2

dt2 · · · dtk
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Without the restriction on the t2, . . . , tk variables the integral is easily computed:

J̃
(1)
k (F ) =

∫
R≥0

· · ·
∫
R≥0

(∫ T/k

0

k∏
i=1

g(kti)dt1

)2

dt2 · · · dtk

=

(∫
R≥0

g(kt1)dt1

)2(∫
R≥0

g(kt)2dt

)k−1

= k−k−1γk−1

(∫
R≥0

g(t)dt

)2

.

We now express the right hand side of (5.3) as J̃
(1)
k (F ) − Ek. More precisely, Ek

is given by

Ek =

∫
· · ·
∫

t2,...,tk≥0
t2+...+tk>1−T/k

(∫ T/k

0

k∏
i=1

g(kti)dt1

)2

dt2 · · · dtk

= k−k−1

(∫ ∞
0

g(u)du

)2 ∫
· · ·
∫

t2,...,tk≥0
t2+...+tk>k−T

k∏
i=2

g(ui)
2du2 · · · duk.

We will now use assumption (35) to show that Ek is small. We start with some
observations. Define

η =
k − T
k − 1

− µ > 0

In particular, we can artificially write

k − T = (k − 1)(µ+ η).

We write the restriction on the t2 . . . tk integrals as

u2 + . . .+ uk > (k − 1)(µ+ η)

and obtain the inequality

1 < η2

(
1

k − 1

k∑
i=2

ui − µ

)2

.

Using this inequality we can estimate Ek as

Ek ≤ η−2k−k−1

(∫ ∞
0

g(u)du

)2 ∫ ∞
0

· · ·
∫ ∞

0

(
u2 + . . .+ uk

k − 1
− µ

)2 k∏
i=2

g(ui)
2du2 · · · duk

We can compute∫ ∞
0

· · ·
∫ ∞

0

(
2

(k − 1)2

∑
2≤i<j≤k

uiuj −
2µ

k − 1

k∑
i=2

ui + µ2

)
k∏
i=2

g(ui)
2du2 · · · duk = −µ

2γk−1

k − 1
.
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This accounts for all the terms in our upper bound for Ek that do not contain u2
i

for some 2 ≤ i ≤ k. To handle the remaining terms we observe that u2
jg(uj)

2 ≤
Tujg(uj)

2. This leads to∫ ∞
0

· · ·
∫ ∞

0

u2
j ·

k∏
i=2

g(ui)
2du2 · · · duk ≤ Tµγk−1.

Combining everything gives

Ek ≤ η−2k−k−1

(∫ ∞
0

g(u)du

)2

·Tµγ
k−1 − µ2γk−1

k − 1
≤ µTγk−1

η2(k − 1)kk+1

(∫ ∞
0

g(u)du

)2

.

Using

(k − 1)η2 ≥ k(1− T/k − µ)2 and µ ≤ 1

and combining all our observations so far gives is the rather clean result

kJ
(1)
k (F )

Ik(F )
≥
(∫∞

0
g(u)du

)2∫∞
0
g(u)2du

·
(

1− T

k(1− T/k − µ)2

)
.

We have arrived at the problem of maximizing
∫ T

0
g(u)du under the constraints∫ T

0
g(u)2du = γ and

∫ T
0
ug(u)2du = µγ. We guess18 that

g(t) =
1

1 + At
.

With this choice we compute∫ T

0

g(u)du =
log(1 + AT )

A
,∫ T

0

g(u)2du =
1

A

(
1− 1

1 + AT

)
and∫ T

0

ug(u)2du =
1

A2

(
log(1 + AT )− 1 +

1

1 + AT

)
.

We choose T such that 1 + AT = eA.19 This leads to

µ = (1− e−A)−1 − A−1, T ≤ eA/A and

1− T/k − µ ≥ A−1(1− A/(eA − 1)− EA/k).

18One can arrive at this by rewriting the problem as maximizing∫ T

0

g(u)du− α

(∫ T

0

g(u)2du− γ

)
− β

(∫ T

0

ug(u)2du− µγ

)
with respect to α, β > 0 and g and then considering the Euler-Lagrange equation.

19This turns out to be close to optimal.
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Inserting everything above yields

kJ
(1)
k (F )

Ik(F )
≥ A

1− e−A

(
1− T

k(1− T/k − µ)2

)
≥ A

(
1− AeA

k(1− A/(eA − 1)− eA/k)2

)
,

where we need to make sure that the right hand side is positive. Our final choice
for A is

A = log(k)− 2 log log(k) > 0.

For sufficiently large k we obtain

1− T/k − µ ≥ A−1

(
1− log(k)3

k
− 1

log(k)2

)
> 0.

In particular µ < 1− T/k as required in (35). We end up with the estimate

Mk ≥
kJk
Ik
≥ (log(k)−2 log log(k))

(
1− log(k)

log(k)2 +O(1)

)
≥ log(k)−2 log log(k)−2

for k sufficiently large. This completes the case of large k.
If k is small we let P be a symmetric polynomial and suppose that

F (t1, . . . , tk) =

{
P (t1, . . . , tk) if (t1, . . . , tk) ∈ Rk,

0 else.
(37)

Recall that such a symmetric polynomial P can be written as a polynomial in

Pj(t1, . . . , tk) =
k∑
i=1

tji .

Lemma 5.11 (Lemma 8.1, [Ma]). We have∫
· · ·
∫

Rk

(1− P1)aP b
j dt1 · · · dtk =

a!

(k + jb+ a)!
Gb,j(k),

where

Gb,j(x) = b!
b∑

r=1

(
x

r

) ∑
b1,...,br≥1
b1+...+br=b

r∏
i=1

(jbi)!

bi!

is a polynomial of degree b which depends only on b and j.

Proof. The first step is to show∫
· · ·
∫

Rk

(1− t1 − . . .− tk)a
k∏
i=1

taii dt1 · · · dtk =
a!
∏k

i=1 ai!

(k + a+ a1 + . . .+ ak)!
.

This is done by induction over k. The case k = 1 follows directly from the beta
function identity ∫ 1

0

ta(1− t)bdt =
a!b!

(a+ b+ 1)!
.
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For the induction step we want to substitute v = t1/(1− t2 − . . .− tk) in the first
integral. We compute∫ 1−t2−...−tk

0

(
1−

k∑
i=1

ti

)a( k∏
i=1

taii

)
dt1

=

(
k∏
i=2

taii

)(
1−

k∑
i=2

ti

)a+a1+1 ∫ 1

0

(1− v)ava1dv

=
a!a1!

(a+ a1 + 1)!

(
k∏
i=2

taii

)(
1−

k∑
i=2

ti

)a+a1+1

.

Inserting this we see that∫
· · ·
∫

Rk

(1− t1 − . . .− tk)a
k∏
i=1

taii dt1 · · · dtk

=
a!a1!

(a+ a1 + 1)!

∫
· · ·
∫

Rk−1

(1− t2 − . . .− tk)a+a1+1

k∏
i=2

taii dt2 · · · dtk.

It is easy to conclude using the induction hypothesis.
Now the proof is easily completed by expanding

P b
j =

∑
b1,...,bk

a1+...+bk=b

b!∏k
i=1 bi!

k∏
i=1

tjbii .

Inserting this in our original integral allows us to compute that∫
· · ·
∫

Rk

(1− P1)aP b
j dt1 · · · dtk =

b!a!

(k + a+ jb)!

∑
b1,...,bk

a1+...+bk=b

k∏
i=1

(jbi)!

bi!
.

This only needs to be reformulated slightly by splitting the sum into pieces de-
pending on how many of the bi are non-zero. Given r there are

(
k
r

)
ways to choose

r of b1, . . . , bk non-zero. We arrive at∑
b1,...,bk

a1+...+bk=b

k∏
i=1

(jbi)!

bi!
=

b∑
r=1

(
k

r

) ∑
b1,...,br≥1
b1+...+br=b

r∏
i=1

(jbi)!

bi!

as desired. �

This can be used to get reasonable expressions for our integrals:
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Lemma 5.12 (Lemma 8.2, [Ma]). Let

P =
d∑
i=1

ai(1− P1)biP ci
2 with ai ∈ R and bi, ci ∈ Z≥0

and suppose that F is defined as in (37). Then, for each 1 ≤ m ≤ k we have

Ik(F ) =
∑

1≤i,j≤d

aiaj
(bi + bj)!Gci+cj ,2(k)

(k + bi + bj + 2ci + 2cj)!
and

J
(m)
k (F ) =

∑
1≤i,j≤d

aiaj

ci∑
c′1=0

cj∑
c′2=0

(
ci
c′i

)(
cj
c′2

)
·
γbi,bj ,ci,cj ,c′1,c′2Gc′1+c′2,2

(k − 1)

(k + bi + bj + 2ci + 2cj + 1)!
,

where

γbi,bj ,ci,cj ,c′1,c′2 =
bi!bj!(2ci − 2c′1)!(bi + bj + 2ci + 2cj − 2c′1 − 2c′2 + 1)!

(bi + 2ci − 2c′1 + 1)!(bj + 2cj − 2c′2 + 1)!
.

Proof. We will freely apply the previous Lemma. Let us start by evaluating Ik(F ):

Ik(F ) =

∫
·
∫

Rk

P 2dt1 · · · dtk

=
∑

1≤i,j≤d

aiaj

∫
·
∫

Rk

(1− P1)bi+bjP
ci+cj
2 dt1 · · · dtk

=
∑

1≤i,j≤d

aiaj
(bi + bj)!Gci+cj ,2(k)

(k + bi + bj + 2ci + 2cj)!
.

Turning to J
(m)
k (F ) we first note that by symmetry this is independent of m.

Thus we do the computation for m = 1. Let us again first compute the t1-integral∫ 1−t2−...−tk

0

(1− P1)bP c
2dt1

=
c∑

c′=0

(
c

c′

)( k∑
i=2

t2i

)c′ ∫ 1−t2−...−tk

0

(
1−

k∑
i=1

ti

)b

t2c−2c′

1 dt1

=
c∑

c′=0

(
c

c′

)
(P ′2)c

′
(1− P ′1)b+2c−2c′+1

∫ 1

0

(1− u)bu2c−2c′du

=
c∑

c′=0

(
c

c′

)
(P ′2)c

′
(1− P ′1)b+2c−2c′+1 b!(2c− 2c′)!

(b+ 2c− 2c′ + 1)!
.
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Here we have abbreviated P ′1 = t2 + . . .+ tk and P ′2 = t22 + . . .+ t2k. This allows us
to express(∫ 1

0

Fdt1

)2

=
∑

1≤i,j≤d

aiaj

ci∑
c′1=0

∑
c′2=0

cj

(
ci
c′1

)(
cj
c′2

)
(P ′2)c

′
1+c′2(1−P ′1)bi+bj+2ci+2cj−2c′1−2c′2+2

· bi!bj!(2ci − 2c′1)!(2cj − 2c′2)!

(bi + 2ci − 2c′1 + 1)!(bj + 2cj − 2c′2 + 1)!
.

The remaining t2, . . . , tk-integrals over Rk−1 can be computed using the previous
result. After a bit of bookkeeping one arrives at the required expression. �

We put a = (a1, . . . , ad). The upshot is that we can express Ik(F ) and
∑k

m=1 J
(m)
k (F )

as real positive definite quadratic forms in a. Thus we can write∑k
m=1 J

(m)
k (F )

Ik(F )
=

a>A2a

a>A1a
.

The upshot is that the matrices A1 and A2 can be computed explicitly in terms of
k and the exponents bi, ci. Maximizing expressions as in (5.3) is well studied. We
recall the following result:

Lemma 5.13. Let A1 and A2 be real symmetric positive definite matrices. Then

a>A2a

a>A1a

is maximal when a is an eigenvector of A−1
1 A2 corresponding to the largest eigen-

value of A−1
1 A2. The value of the ration at its maximum is this largest eigenvalue.

Proof. The function we are trying to maximize is scaling invariant. Thus we can
assume things are normalized such that a>A1a = 1. Applying the law of La-
grangian multipliers we see that for a>A2a to have a local extreme point subject
to a>A1a− 1 = 0 it is necessary that

L(a, λ) = a>A2a− λ(a>A1a− 1)

has a critical point. This happens exactly when

0 =
∂L

∂ai
= ((2A2 − 2λA1)a)i

for all 1 ≤ i ≤ d. This happens precisely when

A−1
1 A2a = λa.

In this case it is clear that a>A1a = λ−1a>A2a and the proof is complete. �

It should be clear from here how to complete the proof of Proposition 5.10 by
treating the cases k = 5 and k = 105. However the computations get already
slightly involved and are best done using the help of computers.20

20We rely on Maynard’s computations, which we have not checked ourselves.
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First, if k = 105, then one computes all possible polynomials P with degree at
most 11 that are of the shape considered in Lemma 5.12. There are 42 of these.
For each polynomial one computes the corresponding matrices A1 and A2 as well
as the maximal eigenvalue of A−1

1 A2. It turns out that there is a polynomial for
which we have

λ ≈ 4.0020697 . . . > 4.

This gives the first result.
If k = 5, then we take

P = (1− P1)P2 +
7

10
(1− P1)2 +

1

14
P2 −

3

14
(1− P1).

With this choice one computes that

M5 ≥
∑k

m=1 J
(m)
k (F )

Ik(F )
=

1417255

708216
> 2.

This completes the proof of Proposition 5.10 as well as this section.

5.4. The Endgame. We are now ready to put everything together and establish
our main results.

Theorem 5.14 (Theorem 1.3, [Ma]). We have

lim inf
n

(pn+1 − pn) ≤ 600.

Proof. We pick k = 105 and recall that by Proposition 5.10 we have M105 > 4.
Furthermore, by the Bombieri-Vinogradov Theorem we can take θ = 1

2
− ε for

every ε > 0. Making ε > 0 sufficiently small we can achieve that

θ

2
M105 > 1.

Recall that R = N θ/2−δ.
Having set up everything we can recall our basic strategy. We consider the sum

Sv0(N, ρ) = s2 − ρS1 defined in (11). If we can show

Sv0(N, ρ) > 0,

then there are at least bρ+ 1c primes among the set {n+ h1, . . . , n+ hk} for some
N ≤ n < 2N . Thus we have have to show S2 > ρS1 with our set-up above. But
this follows from Proposition 5.9 (for N sufficiently large). In our case we were
able to achieve bρ+ 1c ≥ 2.

Note that this is true for any admissible 105-tuple H = {h1, . . . , h105}. Thus we
have

lim inf
n

(pn+1 − pn) ≤ max
1≤i,j≤105

(hi − hj).

By choosing the tuple explicitly one establishes the theorem.21 �

21Optimizing the diameter of an admissible 105-tuple can be done numerically. However, we
have not checked the computations ourselves!
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The next result is established similarly:

Theorem 5.15 (Theorem 1.4, [Ma]). Assuming the Elliott-Halberstam Conjecture
(i.e. Conjecture 4.1) we get

lim inf
n

(pn+2 − pn) ≤ 600 and lim inf
n

(pn+1 − pn) ≤ 12.

Proof. For the first statement we again take k = 105. This time, according to
Conjecture 4.1, we are allowed to pick θ = 1 − ε. Thus we can make ε > 0
sufficiently small so that

θ

2
M105 > 2.

Therefore we can run the above argument arriving at ρ > 2 (i.p. bρ+ 1c ≥ 3), so
that

lim inf
n

(pn+2 − pn) ≤ max
1≤i,j≤105

(hi − hj).

We get the desired bound by choosing an appropriate admissible 105-tuple.
Alternatively we can run the argument with k = 5 and θ = 1 − ε. In this

situation Proposition 5.10 allows us to obtain

θ

2
M5 > 1.

Thus, for any admissible 5-tuple H we get

lim inf
n

(pn+1 − pn) ≤ max
1≤i,j≤5

(hi − hj).

Here we can write down H = {0, 2, 6, 8, 12} obtaining the desired result.22 �

Theorem 5.16 (Theorem 1.1, [Ma]). For m ∈ N we have

lim inf
n

(pn+m − pn)� m3e4m.

Proof. The idea of proof is as above. We take θ = 1
2
− ε as above, but we now take

k sufficiently large. Then, by Proposition 5.10 we get

θ

2
Mk ≥ (

1

4
− ε

2
)(log(k)− 2 log log(k)− 2).

Here we can put ε = 1/k and observe that θ
2
Mk > m if k ≥ Cm2e4m. The same

argument we have seen essentially three times already now shows that at least
m + 1 of the number n + h1, . . . , n + hk must be prime. We can now choose the
admissible k-tuple by putting

H = {pπ(k)+1, . . . , pπ(k)+k}.
We claim that this is admissible. Indeed, none of the elements is a multiple of
primes less than k. Since there are only k elements we can also not cover all
residue classes for primes bigger than k.

22It is an easy exercise to check that this is admissible.
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We conclude that

lim inf
n

(pn+m − pn)� (pπ(k)+1 − pπ(k)+k)� k log(k)� m3e4m,

with k = dCm2e4me. This finishes the proof. �

Theorem 5.17 (Theorem 1.2, [Ma]). Let m ∈ N and let r ∈ N be sufficiently large
(in terms of m). For a set A = {a1, . . . , ar} of r distinct integers we have

]{H ⊆ A : n+ h1, . . . , n+ hm are simultaneously prime infinitely often}
]{H ⊆ A}

�m 1

Proof. As above we take k = dCm2e4me. Our argument from the proof of Theo-
rem 5.16 shows that for each admissible k-tuple H = {h1, . . . , hk} there exists a
subset {h′1, . . . , h′m} ⊆ H such that there are infinitely many integers n for which
n+ h′1, . . . , n+ h′m are all prime.

Starting from A we will now construct a set A2 such that any subset of A2 with
k elements must be admissible. This is done by simply removing the residue class
modulo p containing the fewest elements for all primes p ≤ k. A quick count shows

s = ]A2 ≥ r
∏
p≤k

(1− 1/p)�m r.

We can now finish that argument by first observing that there are
(
s
k

)
subsets

H ⊆ A2 all of which are admissible by construction. Each of them contains at least
one subset {h′1, . . . , h′m} with the desired property. Observe that any admissible
set B ⊆ A2 of size m is contained in

(
s−m
k−m

)
sets H ⊆ A2 of size k. Thus there are

at least (
s

k

)(
s−m
k −m

)−1

�m sm �m rm

admissible sets B ⊆ A2 of size m which satisfy the prime m-tuple conjecture. We
are done since in total there are

(
r
m

)
≤ rm subsets {h1, . . . , hm} ⊆ A. �

References

[AZ] M. Aigner, G. M. Ziegler, Proofs from The Book, Sixth edition, Springer, Berlin, 2018.
viii+326 pp.

[FI] J. Friedlander, H. Iwaniec, Opera de cribro, American Mathematical Society Collo-
quium Publications, 57. American Mathematical Society, Providence, RI, 2010.
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