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Abstract

Let F' be a non-archimedean local field of residual characteristic p. Let G denote a connected
reductive group over F' that splits over a tamely ramified field extension of F. Let (K, p) be a
type as constructed by Kim and Yu. We show that there exists a twisted Levi subgroup G° ¢ G
and a type (K°, p°) for G° with p° of depth zero such that the corresponding Hecke algebras
H(G(F),(K,p)) and H(G(F),(KY, p%)) are isomorphic. If p does not divide the order of the
absolute Weyl group of G, then every Bernstein block is equivalent to modules over such a Hecke
algebra. Hence, under this assumption on p, our result implies that every Bernstein block is
equivalent to a depth-zero Bernstein block. This allows one to reduce many problems about
(the category of) smooth complex representations of p-adic groups to analogous problems about
(the category of) depth-zero representations.

Our isomorphism of Hecke algebras is very explicit and also includes an explicit description
of the Hecke algebras as semi-direct products of an affine Hecke algebra with a twisted group
algebra. Moreover, we work with arbitrary algebraically closed fields of characteristic different
from p as our coefficient field.

This paper relies on a prior axiomatic result about the structure of Hecke algebras by the
same authors, and a key ingredient consists of extending the quadratic character of Fintzen—
Kaletha—Spice to the support of the Hecke algebra, which might be of independent interest.
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1 Introduction

The category of all smooth complex representations of a p-adic group decomposes as a product of
indecomposable, full subcategories, called Bernstein blocks, each of which is equivalent to modules
over a Hecke algebra under minor tameness assumptions. Therefore knowing the explicit structure
of these Hecke algebras and their modules yields an understanding of the category of smooth rep-
resentations. While these Hecke algebras are known for GL,, and in that case played an important
role in the representation theory, comparatively little has been known for general reductive groups.
An exception are the Bernstein blocks that consist only of depth-zero representations. For those
blocks, a description of the attached Hecke algebras has essentially (for details see [AFMO]) been
known for over 30 years, thanks to work of Morris ([Mor93]). In this paper, we show that the above
Hecke algebra attached to an arbitrary Bernstein block is isomorphic to a depth-zero Hecke algebra
under the above minor tameness assumptions, which we assume to hold for the next few sentences.
Therefore we now have an explicit description of all those Hecke algebras. Moreover, as a direct
consequence of the Hecke algebra isomorphism, we obtain an equivalence between arbitrary Bern-
stein blocks and depth-zero Bernstein blocks, which allows one to reduce a plethora of problems in
the representation theory of p-adic groups and beyond, including in the Langlands program, to the
depth-zero setting, where solutions are often easier to obtain or are already known.

We obtain the Hecke algebra isomorphism between arbitrary and depth-zero Bernstein blocks by
verifying the relevant axioms of [AFMO] to allow us to apply the general Hecke algebra isomorphism
of [AFMO]. This involves as a key step the extension of the quadratic character of [FKS23] to a
group of double-coset representatives for the whole support of the Hecke algebra, a result that might
be of independent interest to mathematicians in this area. It also involves the study and extension
of Heisenberg—Weil representations that is expected to have applications beyond this paper.

The Hecke algebra isomorphisms as well as the extensions of the quadratic character and the
Heisenberg—Weil representations are all described in an explicit way, making them suitable for a
large range of future applications.

To explain our results in more detail, we fix a non-archimedean local field F' with residual charac-
teristic p and denote by G a connected reductive group over F' that splits over a tamely ramified
extension of F. In this introduction we consider smooth representations with complex coefficients
for simplicity, but all results about Hecke algebra isomorphisms are also proven with C-coefficients
for an arbitrary algebraically closed field C of characteristic different from p. In the complex case,
by Bernstein ([Ber84]), the category Rep(G(F')) of smooth representations of G(F') decomposes
into a product of indecomposable, full subcategories, Rep®(G(F)), that are called Bernstein blocks
and that are indexed by the set of inertial equivalence classes J(G), i.e., equivalence classes [L, 0]
of pairs (L, o) consisting of a Levi subgroup L of (a parabolic subgroup of) G and an irreducible
supercuspidal representation o of L(F):

Rep(G(F) = ] Rep*(G(F)).
s€J3(G)

A pair (K, p) consisting of a compact, open subgroup K C G(F') and an irreducible smooth repre-
sentation (p, V,) of K is called an s-type for s € J(G) if Rep®(G(F')) contains precisely those smooth
representations 7 of G(F') such that every irreducible subquotient of 7 contains p upon restriction
to K. If (K, p) is an s-type, then we have an equivalence of categories between Rep®(G(F')) and



the category of right unital H(G(F'), (K, p))-modules:
Rep*(G(F)) ~ Mod- H(G(F), (K, p)).

where H(G(F), (K, p)) denotes the Hecke algebra attached to (K, p), i.e., as a vector space the
collection of all compactly supported, Endc(V,)-valued functions on G(F') that transform on the

left and right under K by p. The algebra structure on H(G(F), (K, p)) is given by convolution, see
[AFMO| Section for details.

Building upon the construction of supercuspidal representations by Yu ([Yu01]) and using the theory
of covers introduced by Bushnell and Kutzko ([BK98]), Kim and Yu ([KY17, [Fin21a]) provide a
construction of types. This construction yields types for every Bernstein block if p does not divide
the order |W| of the absolute Weyl group W of G by [Fin21b]. Thus, understanding the structure
of the corresponding Hecke algebras H(G(F), (K, p)) and their categories of modules leads to an
understanding of the whole category of smooth representations of G(F') if p  [IW|. The input for the
construction of Kim and Yu includes a twisted Levi subgroup G° C G, a compact, open subgroup
K° c G that contains a parahoric subgroup of G°(F), a depth-zero representation p(}(y of K9 and
a positive-depth (or trivial) character of GO(F), satisfying various conditions, see Definition
for details. The pair (K, p%) is a type for a Bernstein block of G that consists of depth-zero
representations. To a given input, Kim and Yu then attach a compact, open subgroup K C G(F),
which satisfies K N GY(F) = K, and a representation p = p?(y ® K", where p?(y is viewed as a
representation of K via an appropriate inflation and x™ is an irreducible smooth representation
constructed from the positive-depth character via the theory of Heisenberg—Weil representations.
(We caution the reader that what we denote by p and p?(y here for simplicity is denoted by pgg
and ng in the main part of the paper.)

We set p? = p(I)(Y ® €, where e (denoted by e? in Section ) is a quadratic character introduced

by [FKS23]. Then our main result, Theorem [4.3.11] is the construction of an explicit, support-
preserving algebra isomorphism

H(G(F), (K, p)) — H(G(F), (K°, p°)). (1.1)

We provide an example in Appendix that shows that twisting p?{y by € is necessary, i.e., the
above isomorphism would not always hold if we replaced p° by p([)(y. As a direct corollary, we obtain
that if p 1 |W], then an arbitrary Bernstein block is equivalent to a depth-zero Bernstein block.
We also remind the reader that we have an explicit description of the structure of the depth-zero
Hecke algebra

H(GO(F), (K, p)) = Clparo)s 17| % HW (paso)at, ) (1.2)

by [AFMO, Theorem [5.3.6], which is a generalization of prior work of Morris ([Mor93]), and hence
we obtain an explicit description of the structure of H(G(F), (K, p)) by combining and (1.2)).
We refer the reader to the introduction of [AFMO] or to Theorem for the details of the
notation on the right-hand side of .

The isomorphism is obtained by applying the general result [AFMO, Theorem about
Hecke algebra isomorphisms to the setting of this paper, which requires checking all the relevant
axioms of [AFMO]. Most of the axioms follow easily from the construction of Kim and Yu, ex-
cept those that deal with the (extension of the) twisted Heisenberg—Weil part x := k™ ® € in the



construction. In order to apply [AFMO| Theorem we need to construct a whole compati-
ble family of twisted Heisenberg—Weil representations, see Corollary for the compatibility
with respect to compact induction that we require. The existence of such a compatible family
relies crucially on the quadratic twist € of [FKS23]. Moreover, we need to show that the twisted
Heisenberg—Weil representation extends to a group of double-coset representatives of the support
of the Hecke algebra H(G(F'), (K, p)). These results are expected to be of independent interest.

To provide a few more details about the last result, we fix an [M, o]-type (K, p) as constructed by
Kim and Yu for some [M, o] € J(G). Then (K°, p°) is an [M?, 6°]-type for a Levi subgroup M° C G°
and a depth-zero supercuspidal representation ¢ of M?(F). If the representative M is chosen with
care, then MY = MNGP. Moreover, KV is the stabilizer GO(F), in G°(F) of a point z in the enlarged
Bruhat-Tits building of M° that we view as a subset of the enlarged Bruhat-Tits building of GP°.
We denote by NGo(MO)(F)[:,;]M0 the subgroup of the F-points of the normalizer of M? in G° that
preserves the image [x]70 of z in the reduced Bruhat-Tits building of M. This group normalizes
Kj == KN M(F) and contains a set of double-coset representatives for the support of the Hecke
algebras H(GO(F), (K, p")) and H(G(F), (K, p)). A key result in this paper, see Definition m
and Proposition is the construction of a representation %y of Nego(MO)(F )iz],y0 - FKm that
restricted to K agrees with the twisted Heisenberg-Weil representation k|x,, (which is defined
in detail on page 42| in Section . This construction involves, in particular, the extension of the
quadratic character € to a character € of Ngo(MY)(F )ia],,0 - Fm, which is achieved via Definition
and Theorem The character € has its image contained in the fourth roots of unity but

cannot always be chosen to be quadratic.

We briefly sketch some of the steps in the construction of €. The character ¢ was defined as a
product of three characters in [FKS23] and we take as our starting point their reinterpretation as
the composition of a map to the orthogonal group of a quadratic space over the residue field § of '
with the spinor norm. For one of the three characters we can reinterpret the quadratic space in such
a way that we can extend the action of Ky on it to an action of Ngo (M) (F)y 10 K that preserves
the quadratic form, which is done in Section [2.3] For the other two factors we consider and extend
only their product, combining the two underlying quadratic spaces into a new larger quadratic
space V. Since the group Ngo(MO)(F )z],,0 does not fix the point z, the construction of an action
of Ngo(MO)(F )iz],;0 OR V involves a careful construction of compatible isomorphisms between V;
and Vj, for y in the Ngo(M 0)(F)[x]M0—orbit of z, which is achieved in Section Unfortunately,
the resulting action of Ngo(M 0)(F)[x]Mo on V, does not always preserve the quadratic form on
V. used for the construction of the spinor norm and also only yields a morphism of V, viewed as
an f[y/—1]-vector space, not as an f-vector space in general. At the same time, the image of Ky,
acting on V; is not the full orthogonal group. We construct a new group that contains the image of
Ky in the orthogonal group of V,, and also the image of NGo(MO)(F)[x]MO in GL(V,)(f[v/—1]) and
succeed in extending the restriction of the spinor norm to this larger group, see Section [2.6] This
then yields the desired extension € with values in the group of fourth roots of unity. If f contains a
square-root of —1, i.e., f[\/—1] = f, then the extension ¢ is a quadratic character.

We point out that the Hecke algebras associated with types have been already previously heavily
studied in special cases, see [AFMO, for more details. The reduction to depth-zero isomor-
phism was already achieved for GL,, by Bushnell and Kutzko ([BK93]) and is an important
tool for a variety of applications, including its recent use in the construction of a part of a categorical
local Langlands correspondence ([BZCHN24]). Moreover, for more general reductive groups, our



isomorphism [L.1| was previously obtained by Roche ([Roc98]) in the case where F has characteristic
zero, G is a split reductive group, and the above introduced Levi subgroup M is a maximal split
torus; by Adler—Mishra ([AM21]) in the more general situation where the connected part of the
center of G is split modulo the center of G and the underlying supercuspidal representation of a
Levi subgroup is regular; and by Ohara (J[Oha24]) in the case of supercuspidal blocks, i.e., the case
where M = G. Obtaining a general result beyond special cases has been an open problem for
more than 20 years, and indeed it can be thought of as a sharper version of Conjectures 0.2 and 17.7
in [YuOl]. However, the literature contains a discussion of a particular Hecke algebra (see [GRO5),
§11.8]) that appears to be too complicated to agree with the seemingly simpler Hecke algebras of
depth-zero Bernstein blocks. This led to a large part of the mathematical community working in
this area believing that cannot be true in full generality (which we however now prove to be
the case in this paper), but still wishing for weaker form of it to be true, yet not knowing what
form this would be. We will address these concerns in a separate paper [AFO] explaining why the
observations in [GR05] do not lead to a contradiction to our results.

Structure of the paper and guidance for the reader

Section [2| concerns the extension € of the quadratic character e. We have summarized the result
about the extension € of € in the first page of Section 2l Thus, a reader mostly interested in the
statement and not the details of the construction and proofs (even though they mark the core of
our paper) is welcome to read this one page and skip the subsections of Section on a first reading.

In Section [3| we introduce families of Heisenberg—Weil representations and prove various compat-
ibility and extension results for those representations. Sections [2| and 3| are independent of each
other and can therefore be read in any order.

In Section 4.1 we recall the construction of Kim and Yu, but we allow more general coefficients and
include a twist by the quadratic character of [FKS23] in the construction. The remainder of Section
[ is then concerned with verifying all the necessary properties in order to obtain the isomorphism
. While the proofs crucially rely on the results of Sections [2| and [3] we have written Section
in way that a reader who is already a bit familiar with the construction of Yu ([Yu0I]), and who is
willing to simply believe our results from Sections [2| and [3| on a first reading, can start by reading
Section Ml

Appendix spells out some technical details that, while too similar to work of J.-K. Yu to be
original, are also too elaborate to be left to the reader.

In Appendix we provide an explicit example that shows that our main result (1.1) would not
be true in general if we omitted the twist by the quadratic character e.
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Notation

Let F' be a non-archimedean local field endowed with a discrete valuation ord on F* with value
group Z. We fix a separable closure F' of F'. When we refer to a separable field extension E/F, we
always assume that £ C F. For any such field extension E, we denote the unique extension of ord
to E* also by ord. We write O for the ring of integers of F and pg for the maximal ideal of Op.
We also write § for the residue field of F', and let p denote the characteristic of §.

If L is any field, and L’ is any Galois field extension of L, then we let Gal(L'/L) denote the
corresponding Galois group.

We denote by R and C the fields of real and complex numbers, respectively, and we write C
for an algebraically closed field of characteristic £ # p. Except when otherwise indicated, all
representations below are on vector spaces over C. We fix an additive character ¥: F — C* that
is trivial on pr and non-trivial on Op.

We also adopt the fairly standard notation that was defined in [AFMO) § for the following
symbols: Z(G), Ag, Ng(M) and Zg(M), ind¥(p), Iz (p) and Ny (p) for a representation p of a
subgroup of a group H, and the Hecke algebra H(G(F), (K, p)) = H(G(F), p). As in [AFMO] §2.1],
by U(M) we denote the set of unipotent radicals of all parabolic subgroups of G with Levi factor
M.

For a linear algebraic group G over F and an algebraic field extension F of F', we write Gg for the
base change of G to E. We also denote by Lie(G) the Lie algebra of G and by Lie*(G) the dual
of Lie(G). We write Lie*(G)“ for the subscheme of Lie*(G) fixed by the coadjoint action of G' on
Lie*(G).

Suppose that G is a connected reductive group defined over F'. For a torus S of GG, we denote
by X, (S) the (algebraic) cocharacter group of Sz, and we denote by ®(G,.S) the set of non-zero
weights of St acting on the Lie algebra Lie(G) of G equipped with the action of the absolute
Galois group Gal(F/F) of F. In particular, if S is a maximal split torus of G, then the set ®(G, S)
denotes the relative root system of G with respect to S. In this case, we also let (G, S) denote
the relative affine root system associated to (G, S) by the work of Bruhat and Tits ([BT72]).

We denote by B(G, E) the enlarged Bruhat—Tits building of G, and for a maximal torus S of
G that splits over E, we let A(G,S, F) denote the apartment of Sg in B(G, E). We also write
B4(G, E) for the reduced building of G and A™4(G, S, E) for the apartment of Sg in B4(G, E).
If 2 € B(G, F), then we write [z]g for the image of 2 in the reduced building B*4(G, F), and we
may omit the subscript G when it is clear from the context. For any abstract group H that acts
on G(F), and thus on B(G, F) and B*Y(G, F), we let H, and H|,),, denote the stabilizers of z and

[z]¢ under the actions of H, respectively. Let R denote the set {r,r+ | r € R} U {oo} with the
obvious ordering and the obvious addition operation (see [BT72, 6.4.1]). Suppose that E/F is a
field extension of finite ramification degree, and S is a maximal torus of GG that splits over E. For
z € B(G,E), a € ®(G,S), and r € R~ {0}, we let Uo(E)z, denote the Moy—Prasad filtration
subgroup of depth r associated to x of the root subgroup U, (E), and set Uy (E)yz00 = {1}. Here,
we use the valuation ord on EX. For z € B(G, E) and r € R~ {oco} with r > 0, we also let G(E)gyr
be the Moy—Prasad filtration subgroup of G(E) of depth r associated to z (see [MP94, MP96]), and



set G(E)z,00 = {1}. We may abbreviate G(E)y,/G(E)zr+ to G(E)zroy. We use the analogous
notation for the Lie algebra, where r is allowed to be any element of R.

For a representation (p,V),) of a group H, we identify p with its representation space V, by abuse
of notation. For any vector space V', we let idy, denote the identity map on V.

Throughout the paper we let G be a connected reductive group defined over F. We assume that
G splits over a tamely ramified field extension of F', and that the residual characteristic p of F' is
not two. We require these assumptions in order to apply the construction of Kim and Yu, which
uses tameness to be able to work over a splitting field for various arguments, and requires that
p # 2 whenever the construction involves the use of nontrivial Heisenberg—Weil representations, as
constructed in Section [l

2 Extension of the quadratic character of Fintzen—Kaletha—Spice

In this section, we will prove that the quadratic character efo/ ¢ defined in [FKS23, Section 4]
extends to a character of a larger group that contains coset representatives for the support of the
Hecke algebra that we will study in Section |4l This result will be used to prove Axiom of
[AFMOQ] in the setting of this paper (see Propositionbelow), and might also be of independent
interest.

To state the main result of this section more precisely, let G’ be a twisted Levi subgroup of G that
splits over a tamely ramified extension of F', i.e., G’ is a subgroup of G that becomes a Levi subgroup
of a parabolic subgroup of G after base change to an appropriate tamely ramified extension over
which G is split. Let M’ be a Levi subgroup of G’ and let M denote the centralizer of Ay, in G.

Then M is a Levi subgroup of G, and M’ is a twisted Levi subgroup of M. Moreover, we note that
Ay = Appr.

Note that this notation is different from that of [FKS23], where the authors denote our G' by M,
and our M and M’ do not appear.

We fix a positive real number r» > 0. Let xy be a point of B(M', F) and {¢} be a commutative
diagram
B(G',F)——B(G, F)

O
B(M', F)— B(}, F)

of admissible embeddings of buildings in the sense of [KP23, §14.2] such that the embedding
v: B(M,F) — B(G, F) is §-generic relative to xo in the sense of [KY17, Definition 3.2]. Here, and
from now on, we use these embeddings to identify points in buildings of subgroups with points in
the building of the larger groups.

If there exists a character ¢ of G'(F) that is G-generic of depth r relative to z in the sense of [Finl
Definition 3.5.2], then we obtain from [FKS23| Lemma 4.1.2] (using [FKS23, Remark 4.1.3]) the
quadratic character

19 GNP e — {1}

[zo]c



In this section (see Definition and Theorem [2.7.2)) we will prove that the restriction of the
character efO/G to Ng/(M')(F)(z,), extends to a character

Ego/G/: NG/(M/>(F)[x0}M/ — U4,

where 4 = {¢ € C* | ¢* = 1}. Instead of requiring the existence of a G-generic character of depth
r, which will be the setting in which we use the result in Section [4] we will prove this result in the
slightly more general set up of [FKS23| that we recall below.

2.1 Notation

We introduce some additional notation, closely following [FKS23], that will be used throughout

the remainder of this section. Let G,q denote the adjoint group of G and let G/, M., and Myq

denote the images of G, M’, and M in G,q, respectively. Let Gy denote the simply connected

cover of the derived subgroup of G and G.. denote the preimage of G’ in Gs.. We also write
Lo = Gl /G where G denotes the derived subgroup of GL..

sc,ab sc,der? sc,der

We write B for the maximal unramified extension of a separable field extension E of F' (in F)
and Ig denotes the inertia subgroup of the absolute Galois group Gal(F/E). Let § denote the
residue field of F"™, which is a separable closure of .

Given a non-degenerate quadratic form ¢ on a vector space V' (over f, say), we have the corre-
sponding orthogonal group O(V, ). Let sn: O(V,¢)(f) — §</(§*)? denote the spinor norm as
defined in defined in [Sch85, Chapter 9, Definition 3.4] (see also [FKS23|, Section 5.2]).

Let L = M4 or G74. Then Z(L) is a torus, and we denote by ®(Gad; Z(L)) sy, a0d ®(Gad, Z(L))
the sets of nonzero weights in ®(G,q, Z(L)) that are asymmetric and ramified symmetric in the
sense of [FKS23, Section 2], respectively. We also write ®(Gaq, Z(L))™™™™ = &(Gaq, Z(L)) ~
D (Gads Z(L))sym ram- We define ®(Maq, Z(L)) ®(Maq, Z(L)) and ® (Mg, Z(L))>>™rem
analogously by replacing G,q with M_q.

For aj, € ®(Gaq, Z(L)), we denote by Lie(Gad)a, the ar-weight space of Z(L) acting on Lie(Gaq)-
For af, € ®(Gag,Z (L)), v € B(L, F') and t € R, we let E be a tamely ramified field extension of F

such that ay, is defined over E and T' a maximal torus of L that splits over a tamely ramified field
extension Ep of F' containing E and such that x € A(L,T, E). Then we write

asym’ sym,ram’

Lie(Gad)ocL (E)z,t = ( @ Lie(Gad)a(ET)$7t> N Lie(Gad)OéL (E)
aE@(L,T),a\Z(L):aL

By the discussions in [YuOll, Section 1 and 2], the lattice Lie(Gad)a, (E)z, is independent of the
choice of the maximal torus T and the field extension Er. We also write Lie(Gad)a, (E)ztt+ =

Lie(Gad)ay, (E)z,t/ Lie(Gad)ay (E)at+-

2.2 The quadratic character when G is adjoint

We will prove Theorem [2.7.2|starting with the special case where G is adjoint, so from now on until
we assume that G is adjoint. We write s = 3.

Sym,ram



We also assume that there exists and fix a G-good element X € Lie*(G._ ., )(F)—, of depth —r in

sc,ab

the sense of [FKS23, Section 3|. Then [FKS23, Theorem 3.4 and Corollary 3.6] provide us with a
quadratic character
s G (F)ay /G (Fagor = {41}

that we identify with its inflation to G'(F).,,.
According to [FKS23| Definition 5.5.8], the character efo/ ¢ can be defined as the product of three

characters; the character ¢sesymyram defined in [FKS23|, Definition 5.5.1]; the character e ™™™

defined in [FKS23| Definition 5.5.5]; the character grep defined in [FKS23| Definition 5.5.7]. We
will recall (equivalent) definitions of these characters below. For this, we prepare some notation.

Following [FFKS23| Definition 5.3.1] and using [Yu01, Corollary 2.3] as in [FKS23, Remark 5.5.3],
for x € B(M', F) and (Or,t) € (®(G, Z(L))/Ir) x R, we define the j-vector space V, o, 1) by

. unr Gal(Eunr/Funr)
‘/(:c,OL,t) = ( @ Lle(G>aL (E )a:,t:t—i—) y

aLEOL

where FE is the tamely ramified splitting field of Z(L).

0 sym,ram
2.3 Extension of oe”™"

To define greg™ ™", let & = (G, Z(G"))™™"™" /Ip. We fix a subset & such that & = &+ L-&*
and write 6~ = —&T. We recall from [FKS23, Remark 5.5.10] that the f-vector spaces V" and
V,~ are defined by

‘/;+ = @ VY(:I:O,OG/,S) and Vs_ = @ Vv(xo,OG/,s)v
06+ Ogre6—
and the quadratic form ¢s on V;© & V™ is given by ps(YT +Y ") = X <D~/+, }7*]) for YT € V&

and Y~ € V-, where YT and Y~ denote lifts of Y™ and Y~ in Lie G4.(F) respectively (using the
canonical identifications of the weight subspaces of Lie G(F) and Lie(Gs.)(F)), and [ , | denotes
the Lie bracket in Lie Gs.(F). Let O(V," @ V.7, ps) denote the orthogonal group of (V;F @ V™, ps),
which is defined over §f. According to [FKS23, Remark 5.5.10], the adjoint action of G on Lie(G)
induces a group homomorphism

G'(F)ay — O(VS" @ Vi, 04)(F) (2.3.1)

and the character e ™™ agrees with the composition of (2.3.1)) with the homomorphism
g

sgn

OV @ Vi pe) () = 1/(7)? — {1}, (2.3.2)

where sn denotes the spinor norm, as in Section [2.1

We also define the quadratic space (VS’LM ® Vs> ¢s,ar) by replacing &+ with

&3 = &% N (M, Z(G)Y™™ /1)

10



in the construction of the quadratic space (V;" @& V", ;). Since the embedding ¢: B(M,F)
B(G, F) is s-generic relative to zp, the inclusion Lie(M) C Lie(G) induces an isomorphism of
quadratic spaces
(Vi @ Vi) (), eenn) = (ViF @ V() )
Moreover, the adjoint action of Ngr(M')(F)z,),,, = Nar(M")(F)[ze]
n (V;’M @ V,5r)(F) that preserves ¢, ar, because the action of G'(F) on X is trivial, and hence
yields a group homomorphism

on Lie(M) induces an action

Ner(M")(F) izl — OVl & Voag 0san) (f) — O(ViT @ VT, 04)(f)-

s

We define the quadratic character greg ™™ of Ng/(M')(F)

morphism with - .

Lemma 2.3.3. The character cv€
the group Ngi (M’)(F)[xo}

[z0],, @S the composition of this homo-

Asym ram Sym,ram |

s an extension of the character creg Nt (M)(F)s, 10
M’

Sym,ram sym,ram

D

Proof. The lemma follows from the definition of g/€; and the above description of ge;

sym,ram

2.4 A description of the character 6;1;0 / €s

Recall that e / =G/ €sympam * G'€s - v€o. In this subsection, we will recall definitions of the
characters ¢ es mram and ¢€g from [FKS23] and deduce a description of the product G/ esym ram * €0

in Lemma that will allow us to extend (the restriction of) ¢résym ram - r€0 = ﬁzo / gyrmram

G/G" . .
and hence emo/ , in the subsequent subsections.

We introduce additional notation, closely following [FKS23]. For oy € ®(G, Z(M")), let F,

o1 o, and
Fi.,, denote the subfields of F' such that

Gal(F/F,,, ) ={o € Gal(F/F) | o(am) = am}

M’

and
Gal(F/Fxia,,) ={c € Gal(F/F) | o(anm) € {xanm}} .

We write eq,,, for the ramification degree of the extension Fy, ,/F', and fq,, for the residue field
of Fy,, . Similarly, we define Fy,, Fiay, €ays and fo , for ag € ®(G, Z(G’)) We set

Yy = {onr € ®(G, Z(M")) | anr| 2y € ®(G, Z(G))

sym,ram}‘
We also write

{7\/[',asym = @(G, Z(M/))asym N @/ / and M,,sym = ®/]\4’ N (EIJM,

Following [FKS23|, Definition 5.5.1], for Ogr € ®(G, Z(G"))
value e, , for every ag: € Ogr. For Oy € @, /IF, we set so,,, = 65(1;/ /2, where Ocr = Opr| z(cry-
For # € B(M', F), we define the f-vector spaces V, by

Vi = @ @ WI,OG/,t) = @ @ ‘/(:(:,OM/,t)'

Oc/€¢(G7Z(G’))sym,mm/IFte(fe(;é//zeaé,/z) O €2, /IF tE(=50,,,,50,,/)

,asym:*

Symmm/[p, we write ep,,, for the common

11



Applying [FKS23, Definition/Lemma 5.4.8] to the finite subset
6= {(OG/,t) € ©(G, Z(G")) gy ram/ IF X R|t € (€5 /2,50 ,/2), Viwog ) # {0}}

of ®(G, Z(G"))/Ir x R, we obtain the non-degenerate, Gal(f/f)-invariant quadratic form ¢ on V.
Instead of recalling the precise definition of ¢, we only remark the following property of ¢, which
follows from [FKS23, Definition 5.4.5].

Property 2.4.1. Let Oy, Oy € @) /17, t € (=50,,,50,,), and t' € (—SOZW,SOM). Then the
subspace V(g 0, ., 1) of Va is orthogonal to V'(%O;Wt/) with respect to the bilinear form on V; attached
to the quadratic form ¢ unless (Opp,t) = (=04, —t').

The adjoint action of G’ on Lie(G) induces an action of G'(F"™"), on V,, and this action preserves
the form ¢ by [FKS23| Definition/Lemma 5.4.8]. We also define the G'(F""),-stable subspaces
Vio and Vi o of V. by

Va:,O = @ ‘/(:E,OM/,O) and Vm:?’éo = @ @ ‘/(z,OM/,t)v

OM’E':I)/IVI//IF OAI’E¢3\4//IF tG(—SOA/[,,SoM/)
t#0

and note that Vo agrees with the space denoted by V; in [FKS23, page 2293] for the subset
®(G, Z(G"))symram C P(G, Z(G")) that is used in [FKS23, Definition 5.5.7] to define ¢r€p. By Prop-
erty we have an orthogonal decomposition V, = V; o®V,, 0. In particular, the paring ¢ yields
non-degenerate quadratic forms on V, o and V, 4. Since the pairing ¢ is Gal(f/f)-invariant, the
spaces (Vi (f), ), (Vao(f), ), and (V4 20(f), ¢) are non-degenerate quadratic spaces over f, and the
actions of G'(F), on these spaces induce rational orthogonal representations G'(F'), — O(W, ¢)(f)
for W = Vg, Vpo, and V, £9. According to [FKS23, Definition 5.5.7], [FKS23, Definition 5.5.1]
and [FKS23, Remark 5.5.10], the character greg, resp., ¢/€symram agrees with the composition

G (F)ay — O(W, 0) () 25 74 /(F)2 =2 {£1}, where W = Vy 0, resp., Vay 0.

Lemma 2.4.2. The product g'€sym ram - Gr€0 agrees with the composition
G/ (F)ag — O(Vag, @) () = £ /()2 = {#1}.

Proof. The lemma follows from the orthogonal decomposition V,; = V0 @ Va0 by [O’MOO,
Section 55.4]. n

2.5 An action of Ng/(M')(F) on V,,

[zo] psv

[zo]psr o

In order to extend the character (¢ €sym,ram*c7€0) | N, (117)(F),, Using Lemma to Nev (M) (F)
on Vy,. We define the subset As.gen of B(M', F')

we first construct an action of Ng/(M')(F)
by

[zo] psr

Asgen = {2z € 20 + X (Apr) @z R | 02 B(M, F) — B(G, F) is s-generic relative to  } .

We note that for any n € NG/(M')(F)[IO]M,, we have nxg € Ay gen. More generally, let z,y € Aggen-
In order to define the action of Ng/(M')(F)(z,),,, o0 Vi, in Definition we will construct an
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isomorphism I, : V; — V,, that is compatible with the action of Ng/(M')(F)[y,),,, in the sense of
Lemma To construct this isomorphism, we begin by relating the jumps of the relevant root
group filtrations at x and y that are used to define V, and V,.

Let Oy € @)y /Ip and t € (=s0,,,, 50,,/). Recall that we have

. unr Gal(Eunr/Funr)
V(x’tht) = ( @ Lle(G)aM/(E )x,t:t+) .

aMIGOM/

In particular, we have Vi 0,,n = {0} unless Lie(G)a,, (F3 )os+ # {0} for some (hence all)

ayr € Oy The general theory of Galois descent for vector spaces implies that

Lie(Q)a,, (Fa et = Lie(Q)a,, (Fa,, e tt+ Ofa s f.

Qg

Hence, we obtain that Vi, 0, .+ = {0} unless Lie(G)a,,, (Fa,, )ztt+ 7 {0}. For Oy € @/ Ir, we
define

J(Onrs @) = {t € (=s0,,,,50,,) | Lie(G)a,, (Fa,, )apt+ # {0} for all apy € Opp}.

Then we have
Vy = @ @ V(w’tht)'
OM/EQQM,/IF teJ(Opr5x)

Since y — x € X, (Ap) @z R C X (Z(M')) @z R, the pairing (y — x, apr) does not depend on the
choice of apyr € Opp. We write it as (y — x, Oppr).

Lemma 2.5.1. Let Opp € @, /Ip and t € J(Opp;x). Then we have

t+(y—2z,0m) & 50,, 2~ 250,, 2.

Proof. We write t' = t+(y—xz,0p). Fix an element ap;r € Opyr. The definition of the Moy—Prasad
filtration implies that

Lie(G)on/ (FOCM/)x,t:t-i- = Lie(G)aM/ (FaM/)er(xfy),t:tJr
= Lie(G)a]W/ (FO‘JW’ )y,t—&-(y—azaM/):(t+<y—x7OéM/>)+ = Lie(G)aM/ (FaM/ )y,t/:t'+'

Hence, the assumption ¢t € J(Opyr; x) implies that

Lie(G)a,, (Fa,, g+ 7 {0} (2.5.1a)
Suppose that t' € so,,,Z \ 250,,,Z. Then there exists an odd integer 7’ such that t' = so,,, - r’.
Since agr = anr|z(ey is ramified symmetric, according to [FKS23, Lemma 5.6.5], the number

€a., T is an odd integer. Hence, we have

1 )2 = (eagr — 1) /260, € eqt 7

/I /I —1
s—U =s—50,, 1=r/2—¢, g L.

/

Thus, there exists an element w,_y € F,_, C Fa,, such that ord(w,_y) = s —t'. Then, (2.5.1a)
implies that

Lie(G)OC]u/ (FOCM/ )yvs/ Lie(G)a]y[/ (FOCIM/)%S"‘
= Ws—t' * Lie(G)aM/ (FaM/)y,t’/ws—t’ : Lie(G)aM/ (Fon/)y,t’-i- # {0}
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As the embedding ¢: B(M, F) — B(G, F) is s-generic relative to y, we have apy € ®(M, Z(M")).
Since y —z € X.(Ap) ®z R and since M is the centralizer of Ay, we have (y —x, apyr) = 0. Thus,
we obtain t' =t € (—so,,,, 50,,/ ), a contradiction. O

Let Opyp € @y /Ip and t € J(Opp;x). that there exists a unique 7(y — 2;Oppr;t) € 250,,,Z such
that

t + <y — T, OM’> + T(y — I OM’a t) S (_SOA/I/)SOM/)'
Remark 2.5.2. Suppose that ayy € ®(G,Z(M')) is symmetric. Then, there exists an element
Oa,, € Gal(F'/F) such that o4,, (ay) = —apy. In this case, we have

~(y =z, a0r) = {y — 2, —aa) = (y — 2,00, () = (o5, (y — ), anr) = (y -, a0r).

Hence, we obtain that (y—x, ap) = 0. Thus, we have r(y—x; Iapyy;t) = 0forallt € (—so,,,50,,)-
Lemma 2.5.3. Let x,y € Asgen and Opp € ', /Ip. Then the map
tert+(y —2,0p) +1(y — 23005 t)

defines a bijection J(Opp;x) — J(Opprsy).

Proof. Let t € J(Opp;x). We write t = t+(y—x,Opp) and t” = t+ (y—x, Opp ) +1(y — x; Opprs ).
We will prove that t” € J(Onp;y). The definition of r(y—a; Opp; t) implies that t” € (=so,,,,50,,/)-
Thus, it suffices to show that Lie(G)a,, (Fa,, )yt:7+ 7 {0} for all app € Oppr. As in the proof of

Lemma the definition of the Moy—Prasad filtration implies that
Lie(G)aM, (FaM,)x7t;t+ = Lie(G)aM, (FaM/)y,t’:t’+'
Hence, the assumption ¢ € J(Opy; ) implies that Lie(G)a,,, (Fa,, )y,e:e+ 7 {0}. Since

r(y — x;Onpst) € 250, 7 = A

(6761

there exists an element @, € Fy_,, C Fy,, such that ord(w,) = r(y — 2; Op;t). Then, we have

Lie(G)aM, (FaM/)y,t”/Lie(G)oeM/ (FaM/)yi”-i‘ = wT.Lie(G)aM, (FaM/)y,t’/wr'Lie(G)aM/(FaM/)y,t’—f— 75 {0}

Thus, t — t+ (y — x,Opp) +7(y — 2;Oppr5t) defines a map J(Oppr;x) — J(Opgr;y). Replacing z
with y, we also obtain a map J(Opyr;y) — J(Oppsz) by ¢+t + (@ —y, Oppr) +r(z —y; Opprs t7).
Since we have (x — y,Opp) = —(y — x, Opy), these maps are inverses of each other. O

The construction of the isomorphism I,: V; — Vj, involves scaling by appropriate powers of
uniformizers w,,, of Fonsrl e for apy € @), based on the bijection in Lemma This
requires to be able to choose the uniformizers in a compatible way, which we prove next, see
Lemma We first introduce some terminology.

Definition 2.5.4. Let apr € ®y,,. We say that oy is N-symmetric if there exists n € Ngr(M')(F)

and o € Gal(F/F) such that o(nayr) = —apy. We also say that an element ayy € @, is N-
asymmetric if it is not N-symmetric. We define the subsets @, and @', of @,
by

[zo]ar

,N-sym ,N-asym

!/ !/ . . / / /
M/ N-sym = {aM/ € Dy | app is N—symmetrlc} and M/ N-asym = @ ™~ Popr Nogym-
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Lemma 2.5.5. Let ayy € q)/]\/[’,N-8ym' We write agr = OZM’|Z(G’); Then there exists a uniformizer
@ayy Of Fap, such that o(wy,,) = —Wa,, for all o € Gal(F/F) for which there exists n &
Ng/(M/)(F)[wo]M, with o(nayy) = —apyr.

Proof. Since app € ), we have agr € ®(Z(G'), G) gy ram-

is a ramified quadratic extension. Thus, we can take a uniformizer @, of Fu,

Hence, the field extension Fy, /Fia,,
such that

[’(waw[/) = _wOéMH (255&)

where ¢ denotes the unique non-trivial element of Gal(Fy,, /Fxta,, ). We will prove that this w,,,
satisfies the condition of the lemma. Let n € Ng/(M')(F) and o € Gal(F/F) such that

[IO]M'
o(nayr) = —ayp. Since n € G'(F), we have
o(agr) = o(nagr) = o(nan )|z = —am |z = —acr
Then the definitions of F,_, and Fli,_ imply that o € Gal(F/FiaG,) ~ Gal(F/FaG,). Thus, we
obtain that o] Fa,, = t- Now, the lemma follows from (12.5.5a)). O

Lemma 2.5.6. We can choose an element @, for every ayy € @, such that

(1) @a,, is a uniformizer of Fy,, for all any € @y, where agr = anr|zary -

Gl

(2) @Wnay, = Way, for alln € No/(M')(F)g,),,, and oy € Py

M/’

(3) 0(@ay,) = @o(ay,,) for all o € Gal(F/F) and apy € .
(4) W,y = —Wa,, for all apny € Py

Proof. We fix a set C' of representatives of ®,,/ (Ng/(M')(F)(g,,, X Gal(F/F) x {£1}). For each
ayr € O, we fix a uniformizer w@,,,, of Fu ,, with @,,, as in Lemma if app € )

Let app € C. Suppose that ny,ng € Ngr(M')(F)
oo(naayyr). Then, since ny,ny € G'(F), we have

,N-sym"*
and o1, 09 € Gal(F/F) satisfy o1(njayy) =

[wo] s

Jl(aGl) = Ul(nlaG/) = Jl(nlaM/)]Z(G/) = 02(n2aM1)|Z(G/) == O'Q(ngagl) = O'Q(OéG/).

Hence, we obtain that aflag fixes agr. Since w,,,, € Fu,,, we have Uflag(waM,) = Wa,,, that
is, 01(@Way,, ) = 02(@Wa,,,). Thus, for By € (Nar(M')(F)g,,, X Gal(F/F)) app, the uniformizer
0(@a,, ) of F,, = Fy(a,) does not depend on the choice of (n, o) € Ngr(M')(F) (g, < Gal(F/F)
such that o(nayyr) = By, and we set wg, , = 0(wa,, ). If ayr € @y we define the uni-
x Gal(F/F))

,N-asym’
formizer w_g, , of F_p_, = Fg,, by w_g,, = —wpg,,, foreach By € (Ner (M")(F)
Qpgpr.

[zo] pr

Now, we have defined a uniformizer @, , of Fy, for each apy € @), that together by con-
struction satisfy the first three conditions. Hence it remains to show that these uniformizers
satisfy Condition and by the first three conditions it suffices to do so for ay; € C. Let
ay € C. If apyr € @ the choice of the uniformizers above implies that @w_,,, = —@a,,,-

So we assume that apy € @, and let n € Ng/(M')(F); and ¢ € Gal(F/F) such

,N-asym’

,N-sym’ xo] pp
that o(napr) = —appr. Since we chose the uniformizer w,,, as in Lemma we have
0(@Wa,,) = —Wa,, - Thus, we obtain that
W-ayy = Wolnayy) = U(won/) = ~Wa,- O
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We fix uniformizers w, , of F.

u g for anp € fD’M, as in Lemma We also fix a square root ¢ of
—1 in F and also regard ¢ as an element of f. We write F/ = F({) and { = f(().

Let Opp € @, /Ir and t € J(Oppr;x). We set
2(y —z;0pr5t) = 1(y — 20075 ) - €ag,

where ag is any element of Opy|zqry. Since 7(y — z;00v5t) € 250,,Z = e;é/Z, we have z(y —
x;Oppst) € Z. For agpypr € Oypyr, we define the isomorphism

Lyjo(anrst): Lie(G)ay,, (B )apitr = Lie(Gay, (B™)y i+ (y—a,0p)i(t+(y—2,0000) +

x (CWaM, )Z(y—z;OM/ it)

Lie(G)aM, (Eunr)y7t//;t//+’

where t” =t 4+ (y — z,0pp) + r(y — 2;0pp;t). Our choice of the uniformizers w,,,, implies that
the direct sum

. unr @I ac(a ’?t) . unr
@ Lie(G)a,, (E )x,t:t—&-% @ Lie(G)ay, (B )y o4

O‘M’EO]\/I’ OzMIGO]M/
of the isomorphisms above is defined over F"™. Thus, we obtain the isomorphism

. unr Gal(Eunr/Funr)
VY(:E7O]\/I,’t) = ( @ Lle(G)a]\/[l (E )ﬁ,ttJr)

(S GO]W/

— ( @ Lie(G)aM, (Eunr)y7t//:t//+

(3 EOIWI

Gal(Eul’lr/Funl‘)
> = ‘/(y,OM/,t”) .

Then, using Lemma we obtain the isomorphism

Iy‘xl V. = @ @ ‘/(ac,OM/,t) - @ @ ‘/(yvoM’vt//) = Vy'

OMIG‘i)/]w,/IF teJ(Oyyr5x) OM/Eq)/]VI,/IF t"eJ(Opry)

The construction of I, implies that I, o I, = I, for z,y,2 € Asgen. In particular, we have
Ly o Iy, = idy,.

Lemma 2.5.7. Let x,y € Asgen andn € Ng/(M')(F) Then the following diagram commutes:

[zo]psr -

Vl’ = an

Vy = Viys

where Vy — Vie and Vy N Viny denote the maps induced from the adjoint action of G on Lie(G).

Proof. Let apy € @, and t € J(Ipayy;x). Since (y — x, apr) = (ny — nx, noyp ), the definition
of r(y — x; Ipaypy; t) implies that r(y — x; Ipany;t) = r(ny — nx; Ipnayy;t). Hence, our choice of
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uniformizers implies that the following diagram commutes:

Lie(G)aM/ (Eunr)x,t:t—l— 2 Lie(G)naM/ (Eunr)na:,t:t+

Iy|x(a]\4/§t) O Iny\n:c(naM’Qt)

Lie(Gagy (B )y s —— " Lie(Gayys (B™ g
where
t"=t+(y—x,ay) +r(y —x; Lay;t) =t + (ny — nx,nayy) + r(ny — na; Inayg; t).
Now, the claim follows from the construction of I ,. O

Definition 2.5.8. For n € Ng/(M')(F) we define o, € GL(V,,)(f) as the composition

ENIVE

1,
n zg|nzg
on: Vieg % Vigy 2217505 7

Corollary 2.5.9. The map n +— o, defines a group homomorphism N/ (M')(F)(zo1,,, — GL(Vao)(F)-

M/’

Proof. Let m,n € Ng/(M')(F) We will prove that oy, = 0y, 0 0,,. We have

Wla

I, I .
nm zg|nmag m n zg|nmag
Onm = (‘/;C() — Vnmxo — Vrg) = (‘/;C() — Vm:co — Vnmxo E— ng)

1 1 1
m zg|mxg maxqlzg n zg|nmag
- <V1:0 — Vmaco V;to Vmﬂfo — Vnm;vo . V$0>
[mzo\zo n Iz0|nmzo
= | Vo > Vinazo = Vimao Vi | © 0.
By applying Lemma for x = g and y = mxg, we obtain

[mzo\aso n Izo|nmzo . n Inmzo|nzo [zo\nmzo
V;ﬁo —_— meo — Vnmxo — V:po - Vzo — Vnmg E— Vnmxo — V;ﬁo

n I:L'o\nxo
= | Vg = Ve — Viy | = 0n.
Thus, we conclude that 0y, = 0, © 0. O

!
2.6 Extension of ¢&/% /g eymram

By Lemma the restriction of the character ¢/€sym ram - Gr€0 to0 Ngv(M')(F )4, factors through
the morphism n + o,. We will first define a subgroup O(V,,) of GL(V,,)(f), see Definition
that contains o, for all n € Ng/(M')(F)y,,,, see Proposition and use this to ex-
tend (s €symram * ¢7€0)| N, (M7)(F),, - and hence ego/G,, to Ng/(M")(F)[z),,,- To do so, let [apr] €
(@ /Ir) / Gal(f/f) = @)/ Gal(F/F). Since zg € B(G, F), the set J(Opp;x0) does not depend
on the choice of Ip-orbit Opp € [apn] C Dy /Ir. We write J([apr]; zo) for J(Onp; o). We define

Ryo = {(laar),t) | [aar] € @4/ Gal(F/F),t € J([anr);z0)}
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Rygasym = { ([ear], 1) | [oar] € (D%J’,asym/ Gal(F/F),t € J(lanr];z0)}

and

Raysym = {([oear], 1) [ loar] € @y qym/ Gal(F/F),t € J([onr]izo) } -

For ([app],t) € }Nzxo, we set Vi jaylt) = GBOM/e[aM/] V(w0,0,y1,t), Where the sum is taken over
the Ip-orbits in [ap]. According to [DSI8, Corollary 3.11], we can define the action of {+1}

on Ry, by —1- ([apm],t) = (—[am], —t), and this action preserves Ry, asym and Ry sym. For
[([ansr], )] € Ryy/{£1}, we define
Vizo (o)) = D Vigo.fa,, 1) (2.6.1)

([t El([apr]:8)]

_ {V(xo’[aM’Lt) D Viwg,~fanpl—t)  ((learr] ) # (=[aar], —1))
‘/(5'70»[041\/1/}70 (([OéM/],t) =

For later use, we note that if ([aM/], t) € Exo,asym, then ([aM/], t) #* (—[OzM/], —t) and dimf (V(IBO,[([QM/],t)D(f))
is even. The spaces V(g (([a,p].0)) 2re defined over §, and noting Property we have the or-
thogonal decomposition

V;to - @ V(xo,[([aM/],t)]) (262)
[([oepgr] )€ R /{£1}

= < D on,maM/],t)])) S < D V(:co,[aaM/Lt)D)
([ ([

) t)]€Rag asym/{£1} app)t)]€Rag sym/{£1}

For [([anr], t)] € EIO/{:El}, let C[([O‘M’Lt)] : V(mov[([az\/['}’t)}) — ‘/(zo,[([aM/],t)]) denote the multiplication
by ¢ € f. We also write C[([QM,]'J)] for the element of GL(VIO)(f")' that acts on V(xfg,[([aM'/],t)]) by
C[(fap,0)) 2nd acts on the other direct summands of the decomposition (2.6.2) by the identity map.

Definition 2.6.3. We define the group GLT(V,,) to be the subgroup of GL(V,,)(f) that con-
sists of all g € GL(V,,)(f) that satisfy the following property: For every element [([oar], )] of
Ry asym/{£1}, resp., Rygsym/{£1}, there exists an element [([o);,],t)] of Rugasym/{£1}, resp.,

Ry, sym/{£1} such that
IVizo,[(far 10D = Vo (e, 1.0))-

o) to be the subgroup of GL(V,)(f') generated by GL¥ (V) N O(Vay, ¢)(f) and
[OZM/],t)] € Rwo,asym/{:tl}, i.e.,

We define 6(
Clllans ) for |

=

O(Vz,) = GL+(on) N O(on790)(f)>C[([aM/],t)] | [([aar] t)] € Rxo,asym/{i1}> C GL(on)(f/)-

Proposition 2.6.4. For any n € Ng(M')(F)
O(Viy)-

[zo],y» the element o, is contained in the group

Proof. Let n € Ng/(M")(F)(z9),,» Omr € @y /I, and t € J(Opp; o). The definition of the integer
z(xg — nxo; Opp; t) implies that it actually only depends on the Gal(f/f)-orbit of Oy, and we have

z(xo — nwo; Opprs t) = —2(xo — nao; —Oppr; —t). (2.6.4a)
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Hence we can define the subset Rwo (n)/{£1} of ]szo/{il} by
Ruy(n)/{£1} = {[([aM/], 1)) € Ry /{211 ‘ 2(z0 — nzo; Oprrit) = 1 mod 2 for Opp C [aM/]}.

]%y Remark we have z(zo — nzo;Oprit) = 0 for all Oy € @Yy /Ip. Hence, we have
Ry (n)/{£1} C Ryyasym/{E1}. It follows from the definition of o, and our choice of uniformizers
that the element (H (g D)€ Rag (m)/{:£1} Clllagr)t )}) 00y, is defined over f and contained in the group
GL™(V,,). Moreover, this element preserves the quadratic form ¢ on V, by Equation (2.6.4a)) and
Property [2.4.1, Hence, we have (H[([aM/],t)}eEzO(n)/{il} C[([OCM,MO 00, € GLT (V) N O(Viy, ) (),
and therefore o, € O(Vy,). O

To extend our quadratic characters, we fix a square root vsgn;(—1) of sgng(—1) in C* and recall
that by Equation (2.6.1]) dim; (V(Q;O,[([QM,]J)])(f)) is even when [([aarr],t)] € Rygasym-

Prgposnlon 2.6.5. The character (sgnfosn)|GL+(Vz0)mo(
of O(Vy,) that satisfies

Vg 2) () extends to a unique character sn

~ dimg (Vg (((ar,1,0) (P ) /2
1 ao1) = Ve (vt )

for all [(Joar],1)] € Rugasym/ {1}

Proof. By the definition of O( Vi), if such an extension sn exists, it is unique. In order to prove
existence, we define the character sn¢ of the abelian group

A¢ = (Ctagrn | (0], 0] € B uoym/ {1} )

to be the unique character that satisfies

dimg (Vizg, ([ 00,00 () ) /2
st¢ (Cl(fayyr1.01) = Vsgu(=1) eateion®)
for all [([apr],t)] € Rpo,asym/{il}- Since ¢? = —1, Property [2.4.1} Equation (2.6.1)), and [Sch8&5|,
Chapter 9, Example 3.5] imply that
dim (Viag ((lar ] 2
Sgn; (SH(C[Q([aM,Lt)])) = sgu ((—1) {(Viea tepron #)/ )

_ (Sgnf(_l))dimfo/(:co[ a1l (f))/ = sn¢ (Cﬁ[aM'},t)}) .

Hence, we obtain that the restrictions of sgn;osn and sn¢ to the group

GL* (Vau) N10(Vas ) () 1 Ag = (G 1 | ((nr] )] € B asym/ {21}
agree.

Let g € GLT(V,,) and [([aar],t)] € émo’asym/{:lzl} If we write g[([aar],t)] for the element of
Rxo,asym/{:l:l} such that gV(aco,[([aM/],t)]) = Vv(zmg[([aM/} L then the definition OfC [(laps1:1)] implies
that g0 (ja,,1,6] = Col(lay,0)] ©9- Hence, we see that the group GL*(V,,) normalizes the group A¢

and the character sne.. Thus, we can define the character sn of O(Vy,) by si(g - h) = sgn; (sn(g)) -
sne(h) for g € GLT (V) N O(Vay, ) (f) and b € A, O
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Remark 2.6.6. If sgn;(—1) = 1, then the character si is a quadratic character. However, if
sgng(—1) = —1, the character sn takes values in p4 and is not always a quadratic character.

Definition 2.6.7. We define the character ¢/€sym ram,0 of Ng/(M')(F )i as the composition

o] a7
NG/(M,)(F)[.TO]IW e, G(VIO) = M,
and the character EfO/G': Ner(M')(F)(ao],, — Ha by EfO/G’ = e GrEym ram,0-

!

~ ~G/G .
Corollary 2.6.8. The characters g/€symyam,0 and €zy  are extensions of the characters

eNe;
(Gresymram - 6€0) [N (M (Frag A1 €5/ D [N (107 (F)ng

to the group Ne/(M')(F)

[zo]psr -

Proof. This follows from Lemma m Proposition m Lemma and the definition efo/ ¢
G’ €sym,ram * G’ Ezym7ram *G'€0- [

2.7 Extension of the quadratic character for general reductive groups

Now we drop the condition that G is adjoint, and we assume (as before) that there exists a Gaq-
good element X € Lie*(G._ .. )(F)_, of depth —r in the sense of [FKS23|, Section 3]. This is, for

sc,ab

example, implied by the existence of a G-generic character of G'(F') of depth r relative to zy by
[FKS23, Remark 4.1.3]. Then we obtain from [FKS23| Lemma 4.1.2] the quadratic character

6H?O/GI: G/(F)[fro]c — {:i:l},
which is defined as the precomposition of efoad/ng with the map G'(F), — Ghq(F)iz), that

is the restriction of the map G(F) — G.q(F) arising from the adjoint quotient G — G,q. Here
[mo]c S Bred(G, F) = B(Gad, F)

We note that the diagram {¢} from page [§| induces a commutative diagram
B(Gq, F)—=B(Gaa, F)
O
B(M],, F)—— B(Maq, F)

of admissible embeddings, the point [zo]g lies in the image of B(M],, F), and the embedding

B(Maq, F') — B(Gaa, F) is §-generic relative to [zg]g. Hence we obtain from Definition the

~Gaa/G,,
character E[IOTG “: Ner | (M) (F)faoy — Ha-

EfO/G' to be the composition

— Noy (ML)(F);

Definition 2.7.1. We define

e/ Noo(M')(F), — 4,

o] ppr o] pg/

where the first map is the restriction of G(F') — G.q(F') and the second is Eﬁq‘;‘f; Caa

Theorem 2.7.2. The restrictions of the characters ego < and EfO/G, to Ng/(M")(F)(z,], agree.
. . GG’ -GG
Proof. This follows from the definitions of €;;; = and €;; = and Corollary O]
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3 The non-twisted and twisted Heisenberg—Weil constructions

In this section, we will construct a compact, open subgroup K, of G(F') and an irreducible smooth
representation x, of K, from a Heisenberg—Weil datum that will be introduced in Definition [3.6.1
Here x denotes a point of the Bruhat—Tits building of (a twisted Levi subgroup of) G. These
representations will play the roles of ks in Axiom of [AFMO] and k, in Axioms and
of [AFMO] in the setting of this paper. To construct k;, we will follow the construction
of [YuOl, Section 4] that uses the theory of Heisenberg—Weil representations, but incorporating a
quadratic twist introduced by [FKS23|, Section 4] and allowing more general coefficient fields using
[Fin22l, Section 2.3]. Key new results in this section include:

(1) We will prove a comparison result between x, and &, for x and y sufficiently close to each
other, see Proposition [3.6.13] The quadratic twist is essential for this comparison. The result
will be used to verify [AFMO} Axiom [4.3.1|(5)] in the setting of this paper, see Lemma [4.3.7]

(2) We will prove an extension result for the (non-twisted) Heisenberg—Weil representations, see
Proposition This result combined with the extension result for the quadratic character of
[FKS23], Theorem yields an extension of ks, which will be used to verify Axiom
of [AEMOQ], in the setting of this paper, see Proposition [4.3.4]

We note that the parts concerning the construction of the representation k, in Sections
and the first part of Section essentially replicate the procedure in [Yu0l] in our more general
setting. We have included these details for the convenience of the reader and to establish the
relevant notation.

3.1 Compact open subgroups from functions on the root system

Let x € B(G,F). Let T be a maximal torus of G such that the Galois splitting field E of T is
tamely ramified over F' and such that z € A(G, T, FE). According to the discussion in the beginning
of [YuOll Section 2], such a torus exists.

Given any function N
f:9(G,T)U{0} — R,

with f(0) > 0, following Bruhat and Tits ([BT72 6.4.42]) we define the compact, open subgroup
G(E)z ¢ of G(E) by
G(E):v,f = <Ua(E)x,f(a) ’ (ORS (I)<G7T) U {O}>7

where we use the convention that Uy = T and T(E); o = {1}. If f is concave in the sense of
[BT72l 6.4.3], then according to [BT72), 6.4.9(ii),(iii)], we have

G(E)x,f N Uoc(E) = Uoc(E)x,f(oz)

for all & € ®(G,T)U{0}. If z is fixed and f is preserved by the actions of Gal(E/F) on A(G,T, E)
and on ®(G,T), then we will define the compact, open subgroup G(F),, s of G(F') by

G(F)zr=GEF)NG(E)y .
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3.2 The non-twisted construction

In this subsection we recall Yu'’s construction of ¢} _; [Yu0l, Section 4] but allowing more general
coefficient fields using [Fin22 Section 2.3]. The representation ¢, is attached to a twisted Levi
subgroup G’ C G and a generic character thereof as we explain below. In Section we will twist
this construction by a quadratic character, and in Section [3.6] we will attach a representation to
a whole sequence of twisted Levi subgroups G° € G! C ... € G™ and generic characters of those
groups by inductively repeating the below construction.

Let G’ be a (not necessarily proper) twisted Levi subgroup of G that splits over a tamely ramified
field extension of F. We fix an admissible embedding B(G', F') — B(G, F) and identify a point of
B(G', F) with its image in B(G, F). We fix a positive real number r > 0. Let x € B(G', F). Let T
be a maximal torus of G’ such that the splitting field E of T is tamely ramified over F' and such
that © € A(G', T, E).

Following Yu ([YuOIl Section 9]), but recording the point z as index in the notation, we define the
compact, open subgroups J, and J; 4 of G(F') by

Jz = G(F)l«’f and Jx7+ = G(F)ac,f+

where f and fT are the (concave) functions on ®(G,T) U {0} given by

-}

As explained in [YuOTl Section 1, Section 2], the groups J, and J,  are independent of the choice
of a maximal torus T of G’.

a € &G, T) U0},

otherwise,

r a € (G, T)uU{0},

5+ otherwise.

and ffla) = {

s 3

We also recall the following notation from [YuOI) Section 2]

r+ ae®@,T)u{o),

G G)(F)yrszs) = G(F)ypie,  wh T(e) =
( ) e +5+) (F)a, g+ where F(e) {’2"+ otherwise.

According to [BT72, 6.4.44], we have [J,, J;] C J; 4. Hence, J, is a normal subgroup of J,,
and the quotient group J,/J; 1 is an abelian group. Moreover, the definition of the Moy—Prasad
filtration subgroups implies that for all j € J,, we have j? € J, ;. Thus, J,/J, + is an abelian
group of exponent p. We regard J,/J, + as an Fj-vector space.

Let K be an open subgroup of G'(F),- We write K o, = K; NG'(F)z0+. According to [YuOI,
Remark 3.5], the group K, normalizes the groups .J, and J, ;. Hence, we can define the open
subgroup K, of G(F) as K, = K., - J,.

Let ¢ be a character of G'(F) that is G-generic of depth r relative to x in the sense of [Finl,
Definition 3.5.2]. We will construct an irreducible smooth representation ¢/, of K, following [Yu0Tl,
Section 4, Section 11] and [Fin22, Section 2.3].

Remark 3.2.1. In [Yu0l], the representation ¢/ was constructed in the case of C = C. All the
arguments there can be applied to the general cases except for the existence of the Heisenberg—
WEeil representation. We will replace the complex Heisenberg—Weil representation with the mod-#¢
Heisenberg—Weil representation constructed in [Fin22l Section 2.3] if the coefficient field C has
positive characteristic (see Notation below).
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Let ¢, denote the character of (G'(F))) - Ju+ defined as in [YuOll Section 4]. This means ba
is the character of (G'(F),) - Ju,t that is trivial on (G’,G)(F)ma(,un%) and agrees with ¢ on

G'(F) We write N, for the kernel of $I]J17+.

[z]G-
Since [Jg, Jz] C Jy+, we can define the pairing J, x J, — C* by (j1,72) — $$<j1j2j1_1j2_1).
Moreover, according to [YuOl, Lemma 11.1], the pairing above induces a non-degenerate symplectic
pairing
(5 Dot Jof/Jo X Jof/Jut — pip,

where p, = {¢ € C | ¢?» = 1}. We fix an isomorphism ¢,: y, — F, and regard ( , ), as an
Fp-valued pairing. Thus, we can regard J,/J, 1 as a symplectic space over F,. Let (J./Jz+)7
denote the Heisenberg group of J/Jy 4, that is, (Jy/Jz )7 is the set (J,/J.+) x F, equipped
with the group law

(v,a) - (w,b) = <v+w,a+b+ @;">>

The symplectic group Sp(Ji./Jx+) acts on (J./Ju 1+ )7 as g(v,a) = (gv,a) for g € Sp(Jz/Jz+) and
(v,a) S (Jz/Jz,-f—)#

Notation 3.2.2. We define the irreducible C-representation w, of the group Sp (J;/J, + )X (Jx/Jx7+)#
such that the center {(0,a) | a € F,} of (J/Jx+)" acts by the character (0,a) — L;l(a) as follows.

1. Suppose that the coefficient field C has characteristic zero. Then let w, denote the complex
Heisenberg—Weil representation obtained from [Gér77, Section 2]. We note that although
the representation w, is a priori defined over C, it is already defined over Q since the group

p (Jz/Ju4) X (Jo/Jz+)¥ is finite, and hence yields a representation with C-coefficients.

2. Suppose that the coefficient field C has characteristic £ > 0. Then let w, denote the mod-¢
Heisenberg—Weil representation obtained from [Fin22 Section 2.3].

We let j;: Ju/Ny — (Jz/Jz+)? be the isomorphism from [YuOll, Proposition 11.4], which satisfies
the following properties.
e For j € J, 4, we have j,(j + Na) = (0,1, 0 0(5)).
e For j € J,, the first factor of j.(j + Ny) € (Jo/Jo )" = (Ju/Ju4) x Fp is equal to j + Ju 4 €
Jo/ Jw+-

We use the same notation j, for its precomposition with the surjection J, — J,/N,. Moreover,
[YuOll, Proposition 11.4] also implies that the conjugation action of K/ on J, induces a homomor-
phism

fa: K;,c — Sp(Jm/Jm,-l-):

and the maps j, and f, induce a group homomorphism
fo ™ Jat K X Ty — Sp (Ju/ Ju 4) X (Jz/*]r#)#

Thus, following Yu, we can define the irreducible representation ngw of K x J, as the pull back of
wy via fi X j. The construction of qu implies that the restriction of gbx tolx Jp 4 is1x gbw| Jn
isotypic. On the other hand, according to [BT72, 6.4.44], we have [G'(F)g 04, Jz] C Jo 4. Hence

23



the image of K, o, via f, is trivial, and the restriction of by to K z04 % 1is l-isotypic. We define
the character inf(¢,) of K, x J, as the inflation of the character ¢, := ¢|g: via the map

K. x J, = (KL x Jp)/Je — K.

Since the restriction of &E to 1 Jp 4 is 1 X $x|J$7+—isotypic, the restriction of %x to K;E’OJF x 1 1is
1-isotypic, and since we have

K0y = KOG (F)oy = Klgy N s

the set
{(kxk™' ke K.NJ,} C K, xJ,

is contained in the kernel of the representation inf(¢,) ® 5;,3 of K! x J, . Thus, the representation
inf(¢.) ®@ ¢, factors through the surjection Kj x J, — K - J, = K,. We define the irreducible
representation ¢/, of K, to be the representation whose inflation to K/ x J, is inf(¢,) ® ¢,.

Remark 3.2.3. In the case G’ = G, we have K, = K, - G(F),, and ¢, = ¢|x, -

We record some properties of ¢/

Lemma 3.2.4. The restriction of ¢!, to J, is irreducible, and the restriction of ¢!, to the group

Koy Juy s $x|K;!O+.JI‘+ -isotypic. In particular, the restriction of ¢, to G(F)gr4 is trivial.

Proof. The first claim follows from the fact that the restriction of ¢/, to J, is the pull back of the
Heisenberg representation of (J;/J; +)? via the surjection j, (see also [Fin22, Lemma 2.5] for the
positive characteristic case). The construction of ¢/ implies that the restriction of ¢, to J, 4 is
qu\ J, -isotypic, and the restriction of ¢}, to KJ, o, is ¢| Koy = $x| K;(H—isotypic. Thus, we obtain
the second claim. The last claim follows from the second claim and the fact that the character qu
is trivial on the group G(F);,+ C (G, G)(F)a:,(r-i-,g—&-)' O

Lemma 3.2.5. Suppose that C admits a nontrivial involution, with respect to which the character
¢r of K is unitary. Then the representation ¢}, is unitary.

Proof. Since the representation ¢, factors through the map f; X jz, and the group Sp (Jo/Jx+) X

(Jz/Jz+)7 is finite, the representation ¢, is unitary. Then the lemma follows from the definition
of ¢/, and the fact that the character ¢, is unitary. O

3.3 A relative construction

In this subsection, we will construct an irreducible smooth representation (¢')% of an open subgroup
K3 of G(F) from two points z,y € B(G', F'). We will use them to compare the representations ¢/,
and ¢, for 2 and y sufficiently close in Section see Corollary 3.4.9, For this, we first prove that
the genericity condition of a character ¢ of G'(F') does not depend on the choice of points.

Lemma 3.3.1. Let r > 0 and ¢ be a character of G'(F) that is G-generic of depth r relative to

a point x € B(G',F). Then the character ¢ is G-generic of depth r relative to y for any point
y € B(G',F).
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Proof. We fix a maximal split torus S of G’ such that z,y € A(G', S, F). Since the character ¢ is
G-generic of depth r relative to the point z, the restriction of ¢ to the group G'(F')y 4 is trivial,
and there exists an element X* € Lie*(G')% (F) which is G-generic of depth —r in the sense of
[Fin, Definition 3.5.2] such that the restriction of ¢ to

G/(F)x,r/G/(F)x,H- = Lie(G/)(F)r,r/Lie(G/)(F)x,r-i-

is given by ¥ o X*. To prove the lemma, it suffices to show that the character ¢ is trivial on
G'(F)yr+ and the restriction of ¢ to

G(F)yr /G (F)yr+ = Lie(G')(F)y,r/ Lie(G')(F)y,+
is also given by W o X*. We fix U € U(Z¢(S)). According to [KY1T, 4.3 Proposition (a)], we have
G (F)yrs = (G'(F)yrs NU(F)) - (G'(F)yrs N Zer(S)(F)) - (G'(Fyrs NT(F))

Since ¢ is a character of G'(F), it is trivial on the groups U(F) and U(F). Moreover, since
z,y € A(G', S, F), from [AdI98, Proposition 1.9.1], we have

G (F)yrs N Za(S)(F) = Zer (S)(F)yrs = Zer (S) (Pt € G (F)as-

Hence, the character ¢ is also trivial on the group G'(F)y,+ N Z¢/(S)(F). Thus, we have proved
that the character ¢ is trivial on the group G’'(F), 4. Next, we will prove that the restriction of ¢
to the group G'(F')y /G (F)yr+ is given by ¥ o X*. By using [KY17, 4.3 Proposition (a)] again,
we obtain that

G'(F)yy = (G'(F)ys NUEF)) - (G (F)ys N Z (S)(F)) - (G'(F)yr NTU(F)) -

Since X* is fixed by the coadjoint action of G’ (hence of S) on Lie*(G’), we obtain that X* is trivial
on the Lie algebras of U and U. Since the character ¢ is trivial on the groups U(F') and U(F),
it suffices to prove that the restriction of ¢ to the group Zg: (S)(F)yr/Zc/(S)(F)yr+ is given by
W o X*. Now, the claim follows from the facts that

ZG’(S)(F)y,r/ZG’(S)(F)y,T+ = ZG’(S)(F)W"/ZG/(S)(F)x,r+

and the restriction of ¢ to the group G'(F); /G (F')zr+ is given by W o X*. O

Let z,y € B(G',F). We use the notation from the previous section, i.e., we fix a positive real
number r > 0, and ¢ is a character of G'(F') that is G-generic of depth r relative to x, and hence
also relative to y.

Lemma 3.3.2. We have
¢:Jc|JI,+ﬁJy,+ = ¢y|Jz,+ﬂJy,+~

Proof. Let z € {x,y}. Then (ZA>Z| J.., is given by composing the map
Jot = Lot JG(F)opy = (Lie(G')(F).r @ t(F)z,g—l-)/(Lie(G)(F)z,r-i-)
- Lie(G,)(F)Z,r/Lie(G,)(F)Z,rJr = G/(F)Z,T/G,(F)zm+
with the restriction ¢|g/(r), . (that factors through G'(F).,/G'(F). ), where the subspace t(F') C
Lie(G)(F) is defined by t(F) = Lie(G)(F) NDqea (G, r)~a e, 1) Lie(G)(E)q for some maximal torus
T of G’ that splits over a tamely ramified extension £ and for which z,y € A(G',T, E). Now the
claim follows from the equation ¢x|G’(F)z,mG/(F)y,T = dylar (), ncr (P, = <Z5‘G/(F)z,mG/(F)y,T- O
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As before, let K, resp. K, be an open subgroup of G'(F')(, We recall our

notation K, = K - J, and K, = K - J,. We also write

resp. G'(F);

a’ ek

K,, =K,NK),
JL = (L0 Ty
KY =K., JL

We will construct an irreducible representation (¢’ )% of KY below. We define [F,-subspaces VY and
Vé{+ of Jy/Jy+ as Vil = JY ) Jy 4+ = (Ju N Jy) - Jy+/Jy+ and Vé{+ = (Joq NJy) - Jy+/Jy+. (Note
that our group V7, is denoted Uy in [FKS23|.) The following lemma is a generalization of a result
of Yu to our more general setting.

Lemma 3.3.3 ([YuOll). The Fp-subspace V,/ | is totally isotropic, and the space Vi is the orthog-
onal complement of V! in J,/J, 1 with respect to ( , ).

Proof. The proof is analogous to Yu’s considerations in [YuOll Section 12 and 13] where he treats
the case that y is in the G'(F)-orbit of z. For the convenience of the interested reader we have
spelt out more details in Appendix O

Since V7 is the orthogonal complement of the totally isotropic subspace szf 4 in Jy/Jy 4+, the
symplectic pairing ( , ), induces a non-degenerate symplectic pairing on V;// Vg 4. We use the
same notation ( , ), for this pairing on V;'/ V;{ 4. Hence, we can define the Heisenberg—Weil
representation w of Sp (V//V}),) x (VZ/V} +)# associated with the central character (0,a) —
L;l(a) for (0,a) € {0} x F), C (ny/Vf’Q# as in Notation [3.2.2l We define the subgroup (Vi)# of
(Jy/JyHr)# by

V# = {w.a) € (1) T ) v eV},
Then we can define the surjective homomorphism
(Vi = (vive)" (3.3.4)
by (v,a) = (v+V,;,,a). We define the subgroup Py of Sp(J,/J,, 1) as
PY ={g € Sp(Jy/Jy+) | gvxy,Jr - sz’er}.

Since every element g € Py preserves ny’ + and hence also its orthogonal complement V7!, restriction
of g to Vi C J,/Jy + yields the surjection

PY —Sp (VY/VY,). (3.3.5)

Combining (3.3.4)) with (3.3.5)), we obtain a surjective homomorphism

PY w (VI)# = Sp (VY/VE,) x (VE/VE)T, (3.3.6)

xT

and we can pull back w¥ to PY x (V¥)¥ via (3.3.6) and denote the resulting representation of
PY x (V)% also by wy. Moreover, since the image of K., x Ji via f, x j, is contained in the
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group PY x (V¥)#, we can pull back w¥ to a representation ¢ of K., x Ji. Let inf(¢,,) denote
the character of K;’y x J¥ obtained by the inflation of the character ¢, , = ¢| Ky, Via the map

Ky, ) JY — (K, x JI)/J ~ K, .

Then by using the same argument as in the construction of ¢/, in Section we see that the
representation inf(¢,,) ® ¢4 factors through the surjection

/ Yy Iy — Yy
KL, xJY— KL - JY=KY.

We define (¢') as the representation of Ki whose inflation to K, , x J is inf(¢s ) ® L.

3.4 Compatibility with respect to compact induction

We keep the notation from the previous subsections. In this subsection, we will study the relation-
ship between the constructions of representations in Section [3.2] and Section [3.3| with the goal to
to compare the representations ¢/, and gbg/ for = and y sufficiently close to each other, see Corollary
0.4.9

We define the character Xviyﬁr of P/ by
Yy
X ot (g) = Sghy, (det]pp (g]vgg+)) for g € PY,

where detp, (glyv ) denotes the determinant of the the Fy-linear map glyv - Ve, — V)., and
sgng,: Fy — {#£1} denotes the unique non-trivial quadratic character of ;.
Note that K; , N Ji C K, NJ, C K o, is contained in the kernel of the map fy|x; : K, —

PY C Sp(Jy/Jy +), hence we can introduce the following notation.

Notation 3.4.1. Following [FKS23, Definition 4.1.1] we denote by d3 the character of K7, , that

is the precomposition of the character XV,L with the map f,. We also denote by d% the inflation
of this character to K¥ via the surjection K¥ = K}, - J{ — K}, - J{/J! — K /(K] , 0 JY).

Proposition 3.4.2. We have an isomorphism

!/

~ . Kb
Oylry 0y — ind " ™ (¢ ®6Y).
To prove Proposition we prepare a general lemma.

Lemma 3.4.3. Let N be a locally profinite group and No C Ny be open subgroups of N. Let K be
a closed subgroup of N that normalizes N1 and No. We suppose that

N1 N KNy = No.

Let T be a smooth representation of K Na, and we write inf(7) for the inflation of T to K x Ny via

the natural map K X No — K Na. Then the representation indgz%(inf(ﬂ) 1s tsomorphic to the

inflation of indg&(ﬂ to K x N1 via the natural map K x N1 — KNj.
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Proof. Using Mackey decomposition and N; N K Ny = Ny, we have
KxN . N . N . KN
indje g (inf (7)) v, > indyyg (7]n,) = indyt o e, (TIvink ) = indie g (7) 8-

Moreover, a straightforward calculation implies that the actions of K on the representation spaces
of these two representations agree. O

Proof of Proposition[3.4.3. According to [Gér77, Theorem 2.4(b)] and [Fin22, Lemma 3.2] for the
positive characteristic case, we have

Py x(Jy/J y
wy|Py (Jy/dy +)# - lndPyxEV}/y/) )’ (wz ® (XVI’+ X 1)) :

(Note that the statement of [Gér77, Theorem 2.4(b)] omits the character ¥"#+ x 1, but this is only
a typographical error. For more details, see Footnote 1 of [Fin21al). Hence, the definitions of ¢,

and gz~5§f« and the observation that jy : J, — (J,,/Jy+)¥ and j, : J¢ — (Vi) are surjective imply
that

X Jy

$y|K;7yl>< 7, =~ ind xynny <$z ® (6Y x 1)) .
Moreover, the definitions of inf(¢,) and inf(¢x7y) imply that inf(¢,)| K, , x J = inf(¢.,,). Hence,
we have

y*Jy

(inf(8) @ &y ) [y e, = ind; 7 (0f(60) @ 34 @ (82 x 1))
Since
JyNK,, -JY=J,0N ((K’ NKy) - (JoNJy) - Jyq) = (JyNEK,NEKy) - (Je N Jy) - Jy v

= (G'(F)yy NK N Ky) - (Jo N Ty) - Jyq = (Jys NKLNK) - (JoNJy) - Jy

( ) Y+ — ‘]37
Lemma and the definitions of ¢, and (¢')% imply that

K., -
iy, 0, = indyy” ™ ()4 @ 07). 0

Next, we consider the following special case that will be used in Corollary in which we can

compare ¢;, and ¢, and which, via Corollary [3.6.14} will be used in Lemma below to verify
Axiom of [AFMO] in the setting of this paper. We suppose for the rest of this subsection that

G'(F)ey, G'(F)y, C K, C K, (3.4.4)
and

C(F)ys4 € C(F)p sy € G(F),z € GF), ;0 (3.4.5)

(VI

According to Condition (3.4.4), we have K/, = K;,y. We can also prove K, = K} as follows.
Lemma 3.4.6. We have

K;'Jac:Ka/c‘(meJy):K;'(sz‘]y>'°7y,+

In particular, we have K, = KJ.
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Proof. According to Condition (3.4.5)) and the definition of J, and J,, we have
Je CG(F)yy - Jy and Jy+ CG(F)yy - Jot (3.4.6a)

According to the first inclusion in (3.4.6a)), we have J, = G'(F)g, - (J, N Jy). Hence, the first
equality of the lemma follows from Condition (3.4.4)).

We will prove the second equality. According to the second inclusion in (3.4.6a)), we have J, ; =
G'(F)yr - (Jz4+ N Jy4). Hence, using Condition (3.4.4), we have

K. - (J.N Jy) - Jy+ = K. - Jy+ - (JoNJy) = K. - (Jor NJy4) - (JoNJy) = K. - (J.N Jy) -
The last claim follows from the calculation

K,=K, - J,=K, (JoNJy) Jy4+ = K;jy (e dy) - Jy 4+ = KY. O

Now, we have two representations ¢/, and (¢')% of the group K, = KZ. We will prove in Propo-
sition below that these two representations are isomorphic. To do this, we first prepare the
following lemma.

Lemma 3.4.7.

(1) The inclusion J, N Jy C J, induces an isomorphism

(Jar N Jy) / (Jaf,-&- N Jy) - Ja:/Ja:,-i-'

(2) The inclusion J, N Jy C (Jp N Jy) - Jy+ induces an isomorphism
(Jw N Jy) / (Jw,+ N Jy) - (Jo N Jy) ) Jy,-&-/ (Jac,+ N Jy) Sy
Proof. According to Condition and the definition of J, and J,, we have
Jo =G (Fgy - (JoNJy) C Jpq - (JoNJy) C Iy

Thus, we obtain that J, = J, 4 - (J; N Jy), which implies the first claim of the lemma.

We will prove the second claim. It suffices to show that (J, N Jy) N ((Jo 4 N Jy) - Jy+) = Jo v N Jy.
According to Condition (3.4.5) and the definition of .J, and J,, we have Jy, 4 = G'(F)yr(Jz+ N Jy ).
Hence, we have

e Ny = Jz 0 (G/(F)y,r (Jzg N Jy#)) = (J:v a G,(F)yﬂ') (o Ny 4)
- (G/(F)xﬂ» N G,(F)y,r) . (Jzy+ N Jy7+) - Jx,Jr N Jy7+.

Thus, we obtain that
(Jo N Jy)m(Uer N Jy) ’ Jy,+) = (Jx,+ N Jy)'(Jz N Jy,+) = (Jm,+ N Jy)'(JzHr N Jy,+) = Jo g NJy. U

Proposition 3.4.8. We have an isomorphism ¢, — (¢')% as representations of K, = KJ.
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Proof. Combining the isomorphisms in Lemma [3.4.7] we have isomorphisms
J:c/J:r:,+ — (Jo N Jy) / (de- N Jy) - (Jo N Jy) ’ Jy,-i—/ (ny+ N Jy) Tyt — ny/vxy,+~

We identify the space J;/Jz 1 with the space Vi /V/ via this isomorphism. According to Lemma/3.3.2
the symplectic pairing ( , ), on J;/J, 1 agrees with the symplectic pairing ( , ), on V;// Vaf’; .

Hence, we obtain an isomorphism wx]( To)Ju 4 )# = w%|(vggj IV # Then the definition of ¢/, and

(¢")% implies that ¢/ |7z, ~ (¢')%]s.n1,- Moreover, since the isomorphisms in Lemma m are
compatible with the conjugate actions of K, we also have ¢ |k.(s,n0,) = (#)2lk2.(1u00,)- Now,
the lemma follows from Lemma [3.4.6

Corollary 3.4.9. Let z,y € B(G', F) and ¢ be a character of G'(F) that is G-generic of depth r
relative to x. Let K (resp. K, ) be an open subgroup of G'(F)y, (resp. G'(F) N G(F)y, ). We
suppose Conditions (3.4.4) and (3.4.5). Then we have an isomorphism

~ . KL.J
Oyl icr.q, — ind” ™ (¢, ® 6Y) .
Proof. The corollary follows from Proposition [3.4.2| and Proposition |3.4.8 O

3.5 A twist of the construction

In this subsection, we will twist the construction of ¢, in Section by a quadratic character
to define the irreducible smooth representation ¢} of K, see Definition m Then the relation
between the representations attached to two nearby points, i.e., the analogue of Corollary
will be simpler, more precisely, it will no longer require an auxiliary character, see Corollary
below. For z € B(G', F), recall that

e/ G(F) e — {£1}

denotes the quadratic character of G'(F)j,),, defined in [FKS23, Lemma 4.1.2], which is trivial on

the group G'(F)z0+. Since K, N J, C G'(F)z 0+, we can inflate the restriction of eg/G/ to K, via
the map K, = K- J, — K, - J;/J, ~ K./ (Kl NJ;), and we denote the resulting character

again by eg/ < The following lemma follows from [FKS23| Lemma 4.1.2].

Lemma 3.5.1 ([FKS23]). For all x,y € B(G', F), we have
(E:?/G, : 5;) |K§~;mK; = (‘EyG/G, ) 5%) ’K;;’ngj'

Proof. Since K2 N K = (K;, szl/) : (Jif N J?j”), and the characters ef/cl, o, ef/G/, and 0y are
trivial on the group J¥ N Jy s 1t suffices to show that

G/c' G/c
(QE/ 55) |Ky Ky = <6y/ '53) | k7K

which holds by [FKS23| Lemma 4.1.2]. O
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Corollary 3.5.2. Let M’ be a Levi subgroup of G' and x,y € B(M',F). Let M be the centralizer
of Ay in G. Let {1} be a commutative diagram

B(G',F)—— B(G, F)
@)
B(M',F)——=B(M,F)
of admissible embeddings of buildings, which we use to identify B(M', F), B(M,F), and B(G', F)

with their images in B(G, F'). We assume that the images of the points x and y under the projection

to B"Y(M', F) agree and that the embedding v: B(M,F) — B(G, F) is r/2-generic relative to

and y in the sense of [KY17, Definition 3.2]. Then we have S/ |Kng§ = ef/G \Kngg.

Proof. Since the embedding ¢: B(M, F') — B(G, F) is r/2-generic relative to y, we have J,/J, ; =
(JyNM(F))/(Jy+ N M(F)). On the other hand, since the images of the points  and y under the
projection to B*4(M’, F) agree, we have J, N M (F) = J, N M(F). Thus, we have

Jy/Jy,+ 2 V@%/ = (Jx N Jy) ) Jy,+/<]y7+ 2 (Jy N M(F)) / (Jy,+ N M(F)) = Jy/Jyﬁ—a

hence VY = Jy/Jy+ and szf+ = (Vgcy)l = {0}. Thus, the definition of §% implies that 6% = 1.
Similarly, we have 6; = 1. Now, the claim follows from Lemma w O

Definition 3.5.3. For x € B(G’, F)), we define the irreducible smooth representation ¢} of K, as

oF = ¢, @5/

Remark 3.5.4. In the case G’ = G, using Remark [3.2.3] we have eg/G/ =1land ¢ = ¢|kr.c),., -

Now we can rewrite Lemma Lemma and Corollary in terms of ¢ .

Lemma 3.5.5. The restriction of ¢ to J. is irreducible, and the restriction of ¢ to the group
Koy Joy is ¢I|K;70+_JI’+ -isotypic. In particular, the restriction of ¢} to G(F)y,+ is trivial.

xT

Proof. This follows from Lemma [3.2.4] and eg/ ¢ being trivial on the group K’ ot Ja O

T

Lemma 3.5.6. Suppose that C admits a nontrivial involution, with respect to which the character
¢z of K. is unitary. Then the representation ¢F is unitary.

Proof. This follows from Lemma and eg/ ¢ being a quadratic character. O

Corollary 3.5.7. Let x,y € B(G', F) and ¢ be a character of G'(F) that is G-generic of depth r
relative to x. Let K (resp. K;) be an open subgroup of G'(F)(y, (resp. G'(F)y.). We suppose
Conditions (3.4.4) and (3.4.5). Then we have an isomorphism

~ . K’..J
O | K0, — Ind"" (9F) -
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Proof. According to Corollary (3.4.9, we have ¢ |x:.z, ~ ind?;"]y (¢!, ® 8%) . Hence, Lemmas |3.4.6
and and the definition of ¢7 and ¢, imply that

L AT IS e CA ) K C g
= ind 3 ( G/G ®(5g> ® (65/G,‘K;.Jy>
" (oF o () o (1K) @ o)

NlndK Ty (gz5+ © )_1).

:ind 3

To prove the corollary, it suffices to show that J;; = 1. According to Lemma 3.4.7|(1), we have

Ve = (Jo N Jy) - Jut ) Tos = T/ Jos

Hence, we obtain that V., (Vyﬂ"’)L = {0}. Thus, the definition of d; implies that J; = 1. O

3.6 Representations from Heisenberg—Weil data

In this subsection, we will generalize the construction of ¢} and the comparison result Corol-
lary to start with the following more general input.

Definition 3.6.1. A Heisenberg—Weil datum is a 5-tuple ((8), 7, (2, {}), KO, E)) where
(1) 8 = (GO cGlc...cgr= G) with G a tamely ramified twisted Levi subgroup of G for
0<?¢<n-—1andsomen € Zs>;.
(2) 7= (ro,...,rn—1) is a sequence of real numbers satisfying 0 < g <1y < -+ < rp_1.
(3) xis a point of B(G?, F), and {1} is a collection of compatible admissible embeddings of buildings
B(G°,F) — B(G',F) — --- — B(G", F).
We identify points in B(G?, F') with their images via the embeddings {¢}.

(4) K? is an open subgroup of GO(F)[

Filen
% .
(5) ¢ = (¢o,...,Pn—1) is a sequence of characters, where ¢; is a character of G*(F'). We suppose
that ¢; is G**!-generic of depth r; relative to x in the sense of [Fin, Definition 3.5.2] for all

0<1<n-1.

A Heisenberg—Weil datum is a generalization of the part of the datum that Yu ([YuOl, Section 3])
uses to construct the positive-depth factor of his supercuspidal types via the theory of Heisenberg—
WEeil representations of finite groups. More precisely, we allow that some of the twisted Levi
subgroups G* are equal (using the notion of generic characters as in [Fin, Definition 3.5.2.] in
the case of equal twisted Levi subgroups), that Z(G°)/Z(G) is isotropic, that z is any point
in B(G°,F), and we work with the more general group K2 C G°(F)};, and the more general
coefficients C. Following the construction in [YuOl, Section 4], which we will recall due to our more
general set-up and for the convenience of the reader, we will construct from a Heisenberg—Weil
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datum an irreducible representation x, of a compact, open subgroup K, of G(F'). We will then
prove a comparison result for the representations k, attached to different appropriate points x, see
Proposition below. This result will then be used in Section [4] as follows. In Section [ we will
construct an irreducible representation p, of K, following the construction in [YuOll Section 4] and
[KY1T, Section 7] from a G-datum ¥ (see [KY17, 7.2] and Definition below for the definition
of G-datum). To define p,, we will use the representation k, constructed from the Heisenberg—Weil
datum obtained as a part of ¥, and Proposition [3.6.13]is the key to proving that the representations

pz satisfy Axiom of [AFMOI, see Lemma

Let ((8), 7, (z,{e}), K9, E)) be a Heisenberg-Weil datum. We fix a maximal torus 7" of G? such
that the splitting field E of T is tamely ramified over F' and such that € A(G°, T, E). We will
now roughly repeat the construction of Section for each pair G*~! C G* (1 < i < n). More
precisely, for 1 < i < n, we define the concave functions f; and f;" on ®(G%,T) U {0} by

Ti-1 -1 . o i—1
fi(a)z{” €D UIR g ff@:{u € &(G 1)U {0},

Tzl otherwise, L4 otherwise.
We define the compact, open subgroups J. and J£,+ of G'(F) as
Jp =G (F)py, and  Jp, :=G'(F), e

As explained in [Yu0I} Section 1, Section 2], the groups J: and J; ., are independent of the choice
of a maximal torus T of G°. For 1 < i < n, we write J=' = J1J2 ... Ji and ngi = J;;7+Jz27+ e J;7+.
We also write J=0 = Jffg_ = {1}. For 0 < i < n, we define the open subgroups K’ and K;y_i_ of
G'(F) as
K, =Kp-J7' and Kj:,+ = K2,+ ' ng,ia

where KO, = K90 G°(F)z04+. We note that K& = Ki~' - Ji and K. | = K. ' Ji | for all
1 <i<n. Wewrite K; = K/, Ky + = Ky, and J, == J=". We also define the compact, open,
pro-p subgroup K; o4 of K, by

Kooy = Ko NG(F)ooy = K3 4 - Jy.

We note that we have K, = Kg Ky o+-
Applying the construction in Section [3.5] to
G=G', G=G""' ¢=¢;1, K.=K1 (3.6.2)
we obtain an irreducible representation gb;r_l . of K for all 1 <i < n. According to Lemma,
+

i 1. to the group GY(F)gr;_,+ is trivial. Since we have

the restriction of ¢

K.nJS g2 g C GHF )y, € GHF)pm o+

+

1—1,x ; )

to an irreducible representation inf (¢i71, -

for 1 < ¢ < n—1, we can inflate the representation ¢
of the group K, via the surjection

Ky =KL - JIV g2 g — KL gt g2 g f it itz g~ KL (KL JEH T2 ).
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We define the irreducible representation k, of K, as

Ke = lnf(¢a:x) ® lnf(qb—li_,z) gz lnf((bn 2 :U) ® ¢n 1z

We note that the representation ¢, in Section agrees With the representation x, constructed
from the Heisenberg-Weil datum ((G' C G), (r), (z, {t }) %,(9)), i.e., the construction of r, is

a generalization of the construction of ¢} in Section If n > 1, then we also write k71 =

mf(qu@) ® inf(¢] ) @ ® inf(gpt 2.)- We note that the representation «"" is trivial on J7,
and the restriction of n;; L'to K?~! agrees with the representation obtained by applying the above
construction to the Heisenberg—Weil datum

((GO - Gl c...C anl)’ (7’0, - ,T‘n_g), (.I, {L}),Kg, (¢0, L. ,(bn_g)).

We define another representation s of K, as follows:

Notation 3.6.3. For 1 <i <n, let ¢}, x denote the irreducible representation of K’ obtained by
applying the construction in Sectlonto . Replacing (;SZ 12 DY qﬁ;_m in the definition of k.,
we can define another representation xI* of Kx. We call the construction of the representation k.

%
(resp. k™) from the Heisenberg—Weil datum ((8), 7, (2, {}), KO, ¢ ) the twisted Heisenberg—Weil
construction (resp. non-twisted Heisenberg—Weil construction).

a i—1
The difference between k, and xI* can be described by using the characters ef /G defined in
Section [3.5] as follows.
Notation 3.6.4. Let e? be the character of K, that is trivial on J, and satisfies

Gz Gz 1
e = H |-

The definitions of x, and kX imply that we have

a.

Ko = K2 ® €l

We record some properties of k.

Lemma 3.6.5. The restriction of the representation rk; to the groups J, and K, o4 are irreducible.

Proof. We will prove that the restriction of k, to J, is irreducible by induction on n. When n =1,
the claim follows from Lemma [3.5.5] Suppose that n > 1. Since the group J, is compact, it suffices
to show that

dime (Endy, (kg|s,)) = 1.

We note that J, = J="~1. J". Since the representation x7~! is trivial on J?, and the restriction
of the representation qﬁj{_l , to J3 is irreducible by Lemma we have the isomorphism

Endjzgn—l (Hg_lljzgn—1> = End;, (( n-l & ¢n 1 x)’Jl) = End,, (Hm’Jx)

defined by & — & ® 1d . By combining this isomorphism with the induction hypothesis

nlx

dime (Enszgnq( Ky~ 1|J<n 1))= 1, we obtain the claim. Since J, C K, 4, the restriction of r, to
K, o4 is also irreduc1ble ]
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Lemma 3.6.6. Suppose that C admits a nontrivial involution, with respect to which the restrictions
of the characters ¢; to K. are unitary for all 0 <i < n — 1. Then the representations r, and k3
are unitary.

Proof. The lemma follows from Lemma Lemma and the definition of s, and 5. [

Notation 3.6.7. For 0 < i < n —1, let ggw denote the character of KO- G*(F).0 G(F)I%Jr
defined as in [YuOll Section 4]. We define the character 0, of K, ; as

n—1
0 = H ¢i,x|KI,+-
i=0
Lemma 3.6.8. The restriction of the representation k, to the group K, 4 is 0 -isotypic.

Proof. The lemma follows from Lemma and the definition of x, and 6, (see also [YuOll
Proposition 4.4)). O

According to Lemma and the construction of k., the representation k, is trivial on the group
G(F)g,r,_1+- For later use, we will prove a stronger version of this claim.

Lemma 3.6.9. Lety € B(G°, F) and r,—1 < r such that G(F),, C K, . Then the representation
ke 15 trivial on the group G(F)y,.

Proof. Let S° be a maximal split torus of GO such that =,y € A(G°, S° F). We fix U € U(Zg(S)).
According to [KY1T7, 4.3 Proposition (a)], we have

G(F)y,r = (G(F)y,r N U(F)) ) (G(F)y,r N ZG(SO)(F)) ’ (G(F)y,r HU(F)) :

Hence, to prove the lemma, it suffices to show that the representation , is trivial on the groups
G(F)y, NU(F), G(F)y, N Za(S°)(F), and G(F),,» NU(F). Since z,y € A(G°, S°, F), we obtain
that

G(F)y,r‘ n ZG(SO)(F) = ZG(SO)(F)y,r = ZG(SO)(F)IJ‘ - G(F)x,rn—1+~

Hence, the representation r, is trivial on the group G(F),, N Z¢(S°)(F).

We will prove that the representation k, is trivial on the group G(F),, N U(F) for all U €
U(Za(SY)). Since G(F)y, € K+ and the restriction of r, to K, is f,-isotypic, it suffices
to show that the character 6, is trivial on the group K,  NU(F). Since ¢; is a character of G*(F),
we obtain that ¢; is trivial on the group G*(F)NU(F) for each 0 < 4 <n—1. Then the claim that ¢,
is trivial on the group K, + NU(F) follows from the definition of ¢; , and 6, = H?:_Ol Gielr, - O

Let y € B(G?, F) and let Kg be an open subgroup of G°(F) N G(F)py) such that
GU(F)yry, G'(F)apy €KY, C K C K (3.6.10)
and
G"(F)w271+ - G"(F)%%,1+ C GZ‘(F)QC,”T,1 C Gi(F)%ri;1 (3.6.11)
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_>
for all 1 < i < n. According to Lemma|3.3.1} the 5-tuple (8), 7, (y, {c}), KS, <Z>> is a Heisenberg—

Weil datum. Condition (3.6.11]) ensures that Condition (3.4.5)) is satisfied for the setting of ([3.6.2])
for all 1 <1i < n. We will prove that Condition (3.4.4) is also satisfied in these settings. For later
use, we will prove the following stronger statement.

Lemma 3.6.12. We have

Gi(F)I,Ti’Gi(F)yﬂ - Ksin,+

for all0 <i<mn-—1 and ‘ , .
K. CK) - J' CK,

for all 0 < i < n. In particular, Condition (3.4.4)) is satisfied for the setting of (3.6.2) for all
1 <1< n.

Proof. We will prove the lemma by induction on i. When ¢ = 0, the claims of the lemma fol-
low from (3.6.10). Suppose that i > 0. The definitions of Ji and K¢ imply that G'(F),,, C

G'(F)ep,, € J., C K. . We will prove that G'(F)y,,, € K, ,. According to (3.6.11]), we have
Ji o CGHF)yr,_, - Ji . Hence, we have

Gi(F)yﬂ’i - Gi(F)yﬂ“if1 g sz,—f— g Gi_l(F)yﬂ“if1 : J:fc,-i—'

Moreover, the induction hypothesis implies that G~ Y(F), . , C K ;jrl Thus, we conclude that

Gi(F)y’Ti C K- ‘];,-i- = K;?-'r

= x,

Next, we will prove that K. C K9 - J=". According to (3.6.11), we have J, C G (F)yp,_, - J.
Moreover, the induction hypothesis implies that G*=1(F),,, , € Kit C KU - JySz_l. Thus, we
obtain that

K=K J.CKI G (Fag, - Jy K- I T = K- T
Finally, since K C K|, we have K9 - J=' C K- J&' = K. O
The following proposition is a generalization of Corollary to the general twisted Heisenberg—

Weil construction.

_>
Proposition 3.6.13. Let ((8), 7, (z,{t}), K9, <b) be a Heisenberg-Weil datum. Let y and K be
as above, i.e., y € B(GY, F) and Kg is an open subgroup of G°(F) N G(F)py), such that (3.6.10)
and (3.6.11)) hold. Then we have an isomorphism

~ . KO
Kyl ko.g, — iIndg® ™ (k).
Proof. We will prove the proposition by the induction on n. When n = 1, the claim follows from

(3.6.10), (3.6.11)), Lemma|3.6.12) and Corollary Suppose that n > 1. Then for z € {z,y}, we
have by definition and the induction hypothesis that

+ n—1 : Ka(c)"]ygn71 n—1
and K zlnng,l (% |K;L71). (3.6.13a)

~ n—1
e = Ky @1, y |Kg-Jy§"*1
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Moreover, according to (3.6.10]), (3.6.11f), Lemma [3.6.12} and Corollary we obtain that

Kn 1 Jn
S rylgnr.gy 2 indg (G ,)- (3.6.13b)

To prove the proposition, we will inflate the representation x?~! to K - J,; as follows. According
to Lem we have K~1 N Jy < G HF)n Jy = G Y F)yr, . C ngrl Then applying
Lemma [3.6.9[ to 52*1|K;L71, we obtain that the representation 7! is trivial on the group K»~'n
Jy € G"(F)y,r, .. Hence, we can inflate the representation k2! to the group K, - Jy via the
map K- JJ' — K- J) [Ji ~ K,/ (K, 0 J)") = Ko/ (KR~ 0 J7) - (JENJ)), where the last equality
follows from Lemma [3.4.6, We write inf(k?~1) for this representation of K, - Jy = Krt. gy

Now, combining (3.6.13al) with (3.6.13b]), we obtain that

. KO . LK., . KpThn J . KpThan 1
ind "™ Ky o dezl_fJ; (dez &JC) o~ defl fjn (dez YT ool )
. K9g, (. Kptgn Ty
zdez‘_l'J; <1nf( )®1nd Vot 1 deﬁ L inf(k! 1) ® ¢t Lyl n- Ly
J§n71

. KO.J, . 0 _
~indje ) (inf(627)) © 08 ko, = inf (ind i 7 (87 1)) © 651 k0,

- lnf<K“Z ‘K%Jygn_l) ® ¢n—17y’K3'Jy - “Z |K8'Jy ® ¢n—17y’Kg'Jy

-1
= ("{Z ®¢jz_fl,y>|Kg‘Jy = "éy|Kg.Jy7

0, 7<n—1
where inf (indKfL,le (k21 K;_l)) and inf (n”_1| KO, anfl) denote the inflations of the representa-

KQ- J<" ! 1 1 0 7<n—1 0
tions ind  ” KM on—1 ) > kT <n-1 of K J "7* to the group K - J, via the ma
Kol z K} vy IK0.JS p p

K- Jy = K2-J3" gl — KO- J =g g o KO- J =V (KD - gt n gy = KO- " /G Y(F

)yJ’n71 *

O]

We record an immediate corollary of Proposition [3.6.13] that will be used to prove Lemma
below, which in turn is used to verify that the types constructed by Kim and Yu satisfy the axioms
of [AFMQ].

Corollary 3.6.14. Let ((8) ,(x {L}),Kg,g) be a Heisenberg-Weil datum. Let y € B(GY, F)

and KO be an open subgroup ofGO( JNG(F )y Suppose that G(F)y0+ € GO(F)y0+ C K2 C KS

and GZ( ) Ly C GYF )y sl C GYF )y rie1 C GZ(F)y o1 for all 1 < i< n. Then we have an
v 2 ’ 2

isomorphzsm

~ . JKOK
Fylio.x, o — ndgt 0" (Ky).
Proof. According to the assumptions, we have G(F)y o, G*(F)ery € GY(F)eo+ = Ko, € KJ C

K. Moreover, we have K9 - Ky 0 = K3 - (K) NG°(F)y04) - Jy = K2 - J,. Thus, the claim follows
from Proposition [3.6.13 O
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3.7 An extension of the non-twisted Heisenberg—Weil representation

Let HW(X) = ((8),7,($,{L}),K2,$) be a Heisenberg-Weil datum and M° be a Levi sub-
group of G. Let M® denote the centralizer of A0 in G for 0 < i < n. According to [KY1T7,
2.4 Lemma (a), (b)], M? is a Levi subgroup of G* and a tamely ramified twisted Levi subgroup of
M = M™. Note that by construction Z(M?)/Z(M?) is anisotropic for all 0 < i < n. We write

%
M = (MO CM'C...C M") We fix a commutative diagram {¢}

B(GY, F) — B(G', F) — - — B(G", F)

el e ]

of admissible embeddings of Bruhat-Tits buildings and identify a point in B(M?, F') with its images
via the embeddings {¢t}. We assume that z € B(M°, F). We define the open subgroup Ko of
MO(F)py,, by Ky = MP(F) N KY. The following lemma is proved in [KY17, 5.3 Lemma] for a
slightly less general notion of generic characters and assuming the additional hypothesis that p is
not a torsion prime for the dual absolute root datum of G.

Lemma 3.7.1. The characters ¢i|Mi(F) are M -generic of depth r; relative to x for all 0 < i <

Y .
n — 1. Thus, the 5-tuple HW (X)) = ((M),?, (z,{¢}), Knpo, (Polpro(rys - - - ,¢n,1|Mn_1(F))) is a
Heisenberg—Weil datum.

Proof. Let 0 < i < n — 1. Since the character ¢; is G'*'-generic of depth r; relative to the
point x, the character ¢; is trivial on G*(F); 4, and there exists an element X € Lie*(G")%" (F)
which is G**l-generic of depth —r; in the sense of [Fin, Definition 3.5.2] such that the restric-
tion of ¢; to GYF)zyr, /G (F)zri+ =~ Lie(G)(F)gr,/ Lie(G)(F)zr+ is given by ¥ o X7, Let
Xiri € Lie*(M®)™"(F) denote the restriction of X} to Lie(M?). Since the restriction of Gil pri(ry to
MYF) gy, /M(F)g .y is given by W o X1, it suffices to show that X7}, ; is M*1generic of depth
—r;. Since X} has depth —r; at x, the restriction of 1) o X} to Lie(G").,, is non-trivial. Moreover,
the restriction map from Lie*(G?) to Lie*(M?) yields, by definition of M?, an isomorphism of the
subspace Lie*(G¥)Am0 C Lie*(G?) with Lie*(M?). Hence, since X} € Lie*(G%)4m0 C Lie*(G"), the
restriction of ¢ o X to Lie(M?),,, is also non-trivial. Thus, X}, satisfies Condition (GEO) of
[Fin, Definition 3.5.2]. Condition (GE1) of [Fin, Definition 3.5.2] follows from the same condition
for X7 because ®(M T) (M, T) C &G, T) \ ®(G",T) for T some maximal torus of
M that splits over a tame extension E/F. Moreover, Condition (GE2) of [Finl, Definition 3.5.2]
follows from the genericity of X; and the fact that the absolute Weyl group of M relative to a
maximal torus T of M? is the intersection of the absolute Weyl groups of M+ and G relative to
T.

The last claim follows from the first claim and the fact that M’ are tamely ramified twisted Levi
subgroups of M for all 0 < i <n. O

Let 3 denote the representation obtained from the Heisenberg-Weil datum HW(X)y, via the
non-twisted Heisenberg—Weil construction. Replacing the Heisenberg—Weil datum HW(X) with
HW(X)y/ in the definitions of K., K04, J&, and Jﬂif,-‘r we define the open subgroups Kj; and
Ko+ of M(F) and the compact, open subgroups Ji, and J]i\4,+ of MY (F) for 1 <i <mn.

T
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Lemma 3.7.2. The group Ngo(MP°)(F),
If the group Ngo(MP)(F)|
Ko

o]0 normalizes the groups J]i\/[ and J;w,+ for1 <4 <n.

]340 normalizes the group Ko, it also normalizes the groups Ky and

Proof. The first claim follows from the definitions of Ngo(M°)(F )iz 0 Ji,, and JM 4> and the
observation that NGO(MO)(F)[$]M0 = N¢o (MO)(F)[I]MZ., because Z(M?)/Z(M?) is anisotropic. The
second claim follows from the first claim and the definition of Kj; and K 4. ]

Let 0 <4 < n—1. Since ¢; is a character of G*(F) 2 G°(F) and since Ngo (Mo)(F)[
(Miv Mi+1)(F):c,m+,%+’ o

J}\ji_ Hence the conjugation action of Ngo(M)(F )z],0 O Jir! arising from Lemma induces

a group homomorphism

2440 normalizes

the character q§i|Ji+1 can be extended to a character of Ngo(MO)(F)(,
M.+

Neo(M°)(F) g, .o — Sp(J3 /T35 )- (3.7.3)

z] 50

We define the representation gg; a7 of Ngo(MO)(F )iz],;0 Py composing (3.7.3) with the Weil repre-
sentation of Sp(Jjjfl / J}\jfr) associated with the central character ;! and taking the tensor product

P
of the resulting representation with ¢;| Neo (MO) () o
m

Now, we assume that the group Ngo(MO)(F )a],,0 DOrmalizes the group Kjo. This assumption is
satisfied, for instance, if we take K0 = MO(F), or Ky = M°(F). 0. According to Lemmam
Ngo(MO)(F) - Ky is an open subgroup of M (F').

(] pr0

Proposition 3.7.4. There exists a unique extension Yy of kYy to NGo(MO)(F)[
the restriction of Ky to Ngo (MO)(F)M

o]0 M such that
Lo 18 given by the representation Porr DL @ @ Py -

Proof. The proposition follows from the definitions of x4} and qg; M- O

The following lemma is an analogue of Lemma, and will be used in the proof of Proposition [1.3.4]
below.

Lemma 3.7.5. Suppose that C admits a nontrivial involution, with respect to which the restrictions
of the characters ¢; to K! are unitary for all 0 <i < n—1. Then the representation R is unitary.

Proof. Using the same argument as in Lemma we obtain that the representations 5; a of
NGO(MO)(F)[x]MO are unitary for all 0 < ¢ < n — 1. Hence R}} restricted to ]\TG()(MO)(F)[QC]M0
unitary. Note that NGO<MO)(F)[CC]M0 - Ky = Ngo (MO)(F>MMO - Kyro+ and Kjpro4 is a normal,
compact, pro-p subgroup of NGo(MO)(F)[x]MO - Kpro+. Thus, by integrating an NGO(MO)(F)[x]MO'
invariant Hermitian form over Kjso1, we obtain an Ngo(M 0)(F)[I}MO - Kps-invariant Hermitian
form. O

is
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4 Hecke algebras for the types constructed by Kim and Yu

In this section we will show that the types (K, pz,) constructed by Kim and Yu ([KY17]), but
twisted by a quadratic character introduced in [FKS23] and allowing more general coefficients C, see
Section for the definitions, satisfy all of the axioms necessary for [AFMO| Theorems and
4.4.8/] to hold so that we obtain an isomorphism between the Hecke algebra attached to (K, pz)
and a depth-zero Hecke algebra (see Theorem as well as an explicit description of those
Hecke algebras as a semi-direct product of an affine Hecke algebra with a twisted group algebra
(see Theorem . The results obtained along the way might be of independent interest.

4.1 A twist of the construction by Kim and Yu

We begin by recalling the notion of a G-datum following Kim and Yu ([KY17]), but adjusted
to our more general coefficient field C. From those data we will afterwards construct compact,
open subgroups and representations of some of those following the construction of Kim and Yu
(IKY17]), but including a twist by the quadratic character of [FKS23]. Let d € Z>o and let

= (GO cCGlc...cql= G) be a sequence of twisted Levi subgroups of G. Let M? be a Levi
subgroup of G°. We denote by M? the centralizer of A0 in G for 0 < i < d. According to [KY17,
2.4 Lemma (a), (b)], M? is a Levi subgroup of G* and a tamely ramified twisted Levi subgroup of
M = M?. Note that by construction Z(M?°)/Z(M?) is anisotropic for all 0 < i < d.

%
Definition 4.1.1 ([KY17, 7.2]). A G-datum is a 5-tuple ((8,M0),7, (o, {t}), (Kppo, paso), (b)
satisfying the following:

D1 C = (G°CG' C...C G¥=G) is a sequence of twisted Levi subgroups of G that split over
a tamely ramified extension of F for some d € Z>g, and M? is a Levi subgroup of G°. Let
MO C M! C...C M9 be as constructed above.

D2 7 = (ro,...,rq) is a sequence of real numbers satisfying 0 < r9 < r; < -+ < rg, where all of
the inequalities are strict except for the last one. We also write r_; = 0.

D3 1z is a point of B(M?, F), and {/} is a commutative diagram
B(G, F) ——=B(G", F) ——= .- ——= B(G4, F)
e e ]
BM° F) —=BM' F) ——--- ——=B(M?* F)
of admissible embeddings of buildings that is 7/2—generic relative to xg in the sense of

[KY17, 3.5 Definition], where 7/2 =(0,%,--, sz’l ). We identify a point in B(M?, F) with
its images via the embeddings {¢}.

D4 Ko is a compact, open subgroup of MY(F),, containing M%(F), 0, and pyo is an irreducible
smooth representation of K ;0 such that ((G°, M), (zg,t : B(IM®, F) — B(G°, F)), (K0, pao0))
is a depth-zero G’-datum as in [AFMO| Definition (following [KY17, 7.1]), where
t: B(M°, F) — B(G°, F) is the embedding from {¢}.

40



% .
D5 ¢ = (¢o,...,¢q) is a sequence of characters, where ¢; is a character of G*(F'). We assume that
¢qg = 11if rq_1 = rq and otherwise ¢4 is of depth 4. We also assume that ¢; is G**'-generic
of depth r; relative to zg in the sense of [Finl Definition 3.5.2] for all 0 <i < d — 1.

From now on, we let ¥ = (( 8 M%), 7 (20, {t}), (KMo,pMo),g) be a G-datum with 79 > 0. The
case rg = 0 corresponds to a depth Zero G datum that was already treated in [AFMO) Section
and the reduction-to-depth-zero results in this case are trivial. According to Lemma for
each z € Ay, = x9 + (X.(An) ®z R) such that the diagram {1} is 7 /2-generic relative to z, the
tuple ¥, = ((B,MO), 7, (x,{t}), (KMo,pMo),g) is also a G-datum. From this G-datum 3., we
will now construct pairs (K2, p%), (Kg, pz), and (K, pas) of compact subgroups and irreducible
representations thereof following the construction of Kim and Yu ([KY17, Section 7]), which is
based on [YuOll, Section 4], but twisted by the quadratic character from [FKS23| Section 4] and
allowing more general coefficients. If C = C, these will be types for finite products of Bernstein
blocks for the groups G°, G, and M, respectively. If C = C and K0 = M(F),,, then the resulting
types are types for single Bernstein blocks.

The pair (K9, p2) is the depth-zero pair attached to the depth-zero G%-datum ((GO, MY, 7, (z0,1),

(Ko, p Mo)) in [AFMO/, Section, which we now briefly recall for the convenience of the reader.
For x € A, we define

K)=Kyo-G'(F)po and K, =G(F)g 04 (4.1.2)
If o: BIMY,F) — B(GY,F) is O-generic relative to x, then we define the irreducible smooth

representation pQ of KQ /KO + as the composition of pj0 with the inverse of the isomorphism

Ky /MO(F)z 0+ — K2/K? 2+ that comes from the inclusion Ky C K? . We also regard p? as
an irreducible smooth representation of KU that is trivial on Kg, ey

In order to construct the pairs (K, p,) and (K, par), we let x € A,, and define several compact,
open subgroups of G(F') and M (F) as follows

K, = K)GY(F),, TOG (F)a --Gd(F)xvrd;,

Ko = GO(F)I,0+G( o, GH(F)y - GUF), ra s

Kot = GO(F)o0sGMF), g GHF), gy o GUF), i (11.3)
Ky = KyoMF), M (F), o+ MYF), ras,

Kyor = MO(F):CO,MMI(F)IO,TTUMZ(F)W,% "Md(F)xode—b

We note that K, = Kg Ky o4, K = Kpjo - Ky, the groups Ky and Kjz o4 do not depend on
the point =z € A, and all the above groups are the same as the groups introduced in Sections
and [3.7] attached to the Heisenberg—Weil data

HW (%), :{
and HW (), =

{((MO - M! c...C Md) ) (T’o, s 77ad*1)7 (:Uv {L})7KM07 (QSO’MO(F): . -a(bdfl‘Md*l(F))) (Tdfl - Td)a

((GO g Gl g e g Gd) s (7"0, ce ,Td_l) ( {L}) (¢0, ce >¢d—1)) (Td—l = ’l“d),
(G°cG'c...c@tca™ =G, (r,. .., d),( A, KD (0,5 ¢a)) (ra—1 <ra),

((MO c...C M - ML= Md) s (7‘0, s ,Td), (CL',{L}),KMO, (¢0|M0(F)7 . 7¢d|Md(F))) (rd—l < ’l"d)

i.e., our notation in this section is consistent with the notation in the Section
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Remark 4.1.4. Since we follow the conventions of [YuO1] for the definition of a G-datum, we have
to distinguish the above two cases when extracting the Heisenberg—Weil datum HW (X),, from X,
which will be used below to construct the representations ps,. On the other hand, if we followed the
conventions of [Fin21bl [Fin21a] to define the G-datum, then the Heisenberg—Weil datum HW(X),,
would be obtained by simply removing the depth-zero piece from the G-datum ¥, see [Fin21al,
Remark 2.4].

From now on suppose that the diagram {¢} is 7 /2-generic relative to z, so that ¥, is a G-datum.
We denote by x2¢ and s the representations of K, and K defined from the Heisenberg—Weil
data HW(X), and HW () via the non-twisted Heisenberg—Weil construction as in Notation[3.6.3]
respectively. In other words, rk2¥, resp., 4} is the irreducible smooth representation of K, resp.,
Kjs defined via the theory of Heisenberg—Weil representations as in [KY17, Section 7], [YuOI,
Section 4], and allowing a more general coefficient field C using the arguments in [Fin22], Section 2].

€}

We define the irreducible representations r; of K, and kj of Ky by k2 @ €& and ky = KJR/t[ ®
(e§| K ), where e;G) denotes the quadratic character of [FKS23l Section 4.1]. More precisely, e?
is the character of K, introduced in Notation [3.6.4] constructed from the Heisenberg—Weil datum
HW(X),. In other words, the representation k, is the representation defined from the Heisenberg—

Weil datum HW(X), by the twisted Heisenberg—Weil construction as in Notation [3.6.3]

—
Remark 4.1.5. Let ¢!/ denote the character of K introduced in Notation constructed from
the Heisenberg—Weil datum HW (X)), which is based on [FKS23), Section 4.1]. Then the restriction

—
of the character ¢ to Kjs does not necessarily agree with the character ¢ see Remark |A.2.6
below for an example. Thus, the representation xj; does not necessarily agree with the repre-
sentation constructed from the Heisenberg—Weil datum HW (X)), via the twisted Heisenberg—Weil

construction.

Lemma 4.1.6. The representations 1y and Ky do not depend on the point x € Ay, such that the
diagram {¢} is ?/Q—Qenem’c relative to z, and we have k2| k,, = K%y and K|k, = Kum for all such
x.

Proof. The claim that %} is independent of the points follows from the construction of x3%. More-

a

over, according to Corollary [3.5.2) we have €7 |k,, = eya |k, for all x,y € A;, such that {.} is
7 /2-generic relative to = and y. Thus, the representation ks is also independent of the choice of
z. The remaining claims follow from the definitions. O

Now, we define the irreducible representations p2* and p, of K, and pys of Kjs by
Pt = inf (p)) ® 2, pr =1inf () @ Kz, and  par = inf (pap) © K,
where inf (pg) denotes the inflation of the representation p to the group K, via the surjection
Ky =K Kpor — K - Kooy [Keor ~ K/ (K) N Keoy) = K) /G (F)aoy,
and inf (pys0) denotes the inflation of py0 to Kjy via the surjection

Ky = Kypo - Koy — Kypo - Karor/Karor =~ Kpypo/ (Kpo 0 Karos) = Kpyo/MO(F)y s
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Remark 4.1.7. In [KY17], Kim and Yu attached to a C-valued G-datum 3, the non-twisted
representation p2t. However, some of the results of [KY1T7] rely on [YuOll, Proposition 14.1] and
[YuO1, Theorem 14.2], which were pointed out in [Fin21a] to be false in general. On the other hand,
according to [FKS23, Corollary 4.1.11, Corollary 4.1.12], the twisted representation p, satisfies the
analogues of these propositions. Thus, we can apply the results of [KY17], replacing their non-
twisted construction with our twisted construction.

Moreover, while Kim and Yu ([KY17, §2.3]) assume that p is not a torsion prime for the dual root
datum of G, they only use this assumption for [KY17, 5.3 Lemma|, which remains true without

this assumption (see Lemma |3.7.1]).

Remark 4.1.8. Let = € A, such that the diagram {;} is 7 /2-generic relative to z. For 0 < i < d,
let K denote the compact, open subgroup of G*(F) defined as in Section from the Heisenberg—
Weil datum HW(X),. Since the character ¢; is trivial on the open subgroup G*(F ).+ of K¢, the
image of the restriction of ¢; to the compact subgroup K’ is contained in the group u(C) of roots
of unity in C*. Thus, we can take a character ¢}: G'(F) — u(C) that agrees with ¢; on K:. In
particular, if C admits a nontrivial involution, we obtain that the characters ¢ are unitary (with re-
spect to this involution) for all 0 < i < d. The construction of p, implies that the representations p,
of K, constructed from Y, and from the G-datum ((8, MO, 7, (z,{e}), (K0, paso), ( 0 )
agree. Hence, by replacing ¢; with ¢} if necessary, we may and do assume that the characters ¢;
are unitary (but this only matters for questions of unitarity and preservation of the anti-involution
introduced in [AFMO Section , so a reader not interested in this property can ignore this

step).

For 0 < i < d and = € Ay, such that the diagram {¢} is 7 /2-generic relative to z, we write
&Em for the character of K - G'(F)y0 - G(F)y,, 2+ defined as in [Yu0ll Section 4] that extends
$i| KO - GH(F)yp. We write 6, = [[%, g/b\m K., analogous to Notation m Then we have the
following basic observation that we will use later and which is [YuOll, Proposition 4.4] in the case
of supercuspidal representations.

Lemma 4.1.9 (cf. [YuOll Proposition 4.4]). The restriction of the representation p, to the group
K, 1 is 0,-isotypic.

Proof. This follows from Lemma and the fact that the representation inf (p?) is trivial on
K, ¢ O

If NGO(MO)(F)[xO]MO normalizes the group Ko, e.g., if Kpj0 = M°(F),, or M(F )4, 0, then the ob-
jects GV, G, M, M, zo, K0, Kar, ppjo, par and the families {(Kg, K%Jr, pg)} and {(Kz, Ky 4, pz)}
for appropriate z € A, are an example for the objects with the same names in [AFMO)] Section
and we will show in Section that these objects satisfy all the desired axioms of [AFMO)
Section (] for the choice of

v .
N(pa1o) g, 0 = N(Oa0)ao] o = Neor) (Pare) N Neo (M N (F)zol, 0
(see [AFMO), Notation [3.3.1]). Moreover, the collection of objects G, M, xo, Ky, par, Kz Koy,

pz and the collection of objects G, M°, xg, K0, ppro, K9, K2’+, p are also two examples for

objects to which [AFMO] Section | can be applied for the group N(pM)EO}M = N(pMO)[xo}Mo in
both cases. We will show in Section that both collections of objects satisfy all the axioms of

[AFMO| Section [3].
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4.2 Affine hyperplanes

In order to apply Sections |3|and 4| of [AFMO] to the objects introduced in the previous subsection,
Section we introduce an appropriate set of affine hyperplanes as in [AFMO] Section as
follows. Let 0 < ¢ < d. We fix a maximal split torus S* of M* such that zy € A(G*,S*, F'). For
a € P (G, SY) \ Pap(M?, S?), we define the affine hyperplane Hyp, (/2 in A(G?, S, F) by

H ory = {a: € A(G', S, F) ‘ a(z) = 12 }
I’ 2 2
Since a ¢ ®.q(M*, S?), the intersection A, N H,r,_ /2 is an affine hyperplane in A, = zo +
(Xu(Ar) @z R) = 29 + (X (Ap0) ®z R). We define the locally finite set %, of affine hyperplanes
in A;, by

gi = {.AQ;O ﬂ Ha’T‘iT_1

a € B (G, S) ~ Do (M si)}.

Note that ﬁ%o is the set of affine hyperplanes that we introduced in the depth-zero setting in
[AFMO, Section for the group G° with Levi subgroup M.

Lemma 4.2.1. The set of affine functionals {a\Azo | a € ©u (G, S) N Pagr(M*, 5"} on Ay, and
the set $t; do not depend on the choice of a maximal split torus S* of M".

Proof. The proof is the same as the proof of [AFMO| Lemma [5.2.1] replacing G, M, S and H, in
that proof by G*, M*, S* and H_ i1, and replacing the condition “= 0" by “= ”%”. O
’2

We define the locally finite set §) of affine hyperplanes in A;, by

0<i<d

The definition of § implies that for & € A,,, the diagram {1} is 7 /2-generic relative to z if and
only if  is not contained in any affine hyperplane H € §), that is, * € Agen = Az, ™ (U Hes H )
In particular, we have zg € Agen.

For z,y € Agen, as in [AEMO, , we define the subset £, , of § by
N2y ={H € H | x and y are on opposite sides of H}

and we write d(z,y) = #%4,, which is finite because ) is locally finite.

Lemma 4.2.2. The action of Ngo(M°)(F) on Ay, preserves the set 5.

[IO]]wO

Proof. The proof is analogous to the proof of [AFMO, Lemma [5.2.2]. O

4.3 Hecke algebra isomorphisms for the types constructed by Kim—Yu

From now on, we assume that the group K ;0 is normalized by Ngo (MO)(F ){wo] 0 i1t Order to apply
the results in [AFMO] Section , especially [AFMO. Proposition [5.3.2], which states that the
support of the Hecke algebra attached to (K2, p2) is given by KU 'N(pMO)[axo]Mo - K9. For instance,

if we choose K0 = MO(F),, or M°(F)y, 0, then this assumption is satisfied. If C = C, then the
case of K0 = M?(F),, corresponds to types for single Bernstein blocks.
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In this subsection, we will prove Theorem [£.3.11] that states that there exists a support-preserving
algebra isomorphism H(G"(F),p% ) — H(G(F), ps,) by verifying all the required axioms from
Sections [3| and [4] of [AFMO] that allow us to apply [AFMO, Theorem and Corollary [4.5.2].
We recall that we have constructed in Section ] the two families

KO = (KK (00 Vi) by and K= (e Ko, (e VoD,

of quasi-G-cover-candidates and quasi-G-cover-candidates, respectively, as defined at the beginning
of Section (3.4 of [AFMO].

Proposition 4.3.1. The family K° satisfies Azioms and of [AEMO] for the group
v
N(PMO)[J;O]MO = N(PMO)[xo}MO'

Proof. Since the set of affine hyperplanes ﬁ%o C Ay, used to define the set of generic points in
the depth-zero setting in [AFMO| Section is a subset of §, our set Agen, of generic points
is contained in the set of generic points used in [AFMO] Section . Hence, the properties of

Axioms and of [AFMO] other than Axiom follow from [AFMO| Lemma [5.3.1]
and [AFMOI Proposition [5.3.2]. Axiom follows from Lemma O

We will now prove that the family K also satisfies Axiom of [AFMO].

Lemma 4.3.2.

(1) For every x € Agen, we have

(a) Knz =nK,n™! and Ky = nK, yn~ ! forn e N(pMO)[xo}Mw
(b) the pair (K, pz) is a quasi-G-cover of (K, par),
(¢c) Ko =Ky - Ky 4,
(@) Koy = (Ko NU(F)) - (Kp 0 M(F)) - (Kpy NU(F)) for all U € U(M).
Moreover, the group K, . N M(F) is independent of the point x € Agen.
(2) For x,y,z € Agen such that d(z,y) + d(y,z) = d(z, z), there exists U € U(M) such that

K,NU(F)CK,NUF)CK,NU(F) and K,NnU(F)CK,NU(F)CK,NU(F).

Thus, the family K satisfies Axiom|3.4.1| of [AFMO] for the group N(pM)QQ = N(pMO)[Z’o]Mo‘

[zo] s

Proof. The first claim follows from the definitions, Lemma and [KY17, 4.3 Proposition,
Theorem 7.5]. A proof for the second claim can be obtained by making several replacements in the
proof of the second claim of Lemma of [AFMO]. Specifically, replace the symbol G by G?,
“>0” and “< 0” by “> ”%” and “< ”T*“’, and H, by HG/’WT—l for some 0 < ¢ < d such that there

exists a € ®,g(G?, %) whose gradient Da € ®(G?, S%) occurs in the adjoint representation of S* on
the Lie algebra of U and a(x) > “* and a(y) < “;*. The first two properties of Axiom of
[AFMO)] follow from Lemma and Lemma the remaining properties from the first two
claims of this lemma. O
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Next, we will prove that the quadruple (K0, ppro, Knr, par) together with the group N(PMO)[mo]Mo
satisfy Axiom of [AFMQ]. To do so, we will define an explicit extension xps of kys to the
group

Neo (M) (F) o]0 - Kt 2 N(paro) o]0 - Kty

which might be of independent interest.

Let %3¢ denote the extension of k3% to the group Ngo(MY)(F )izo] 0+ Km defined in Proposi-
tion For the reader who prefers to skip the details of Sectlon[l 3] on a first reading, here is
a description of #4%: The conjugation action of Ngo(M 0)(F)[IO]MO on M(F') induces symplectic
automorphisms on the symplectic spaces appearing in Yu’s construction of x}. Hence, we ob-
tain a group homomorphism from Ngo(MY)(F )[Io] to the product of the assomated symplectic
groups. Then we can define the action of Ngo(M 0)( )[xO]MO by composing this homomorphism

with the tensor product of the Weil representations, and take the tensor product of the resulting

representation with [[o<;<4 ¢i’NG0(MO)(F)[Io]M0

Definition 4.3.3. We define the representation %y; of Ngo(MO)(F)

el

=~ ~nt
KM = Ky @ €50,

~KM by

[zo] 0

- Ky defined by 68 =1 and

xo’KM 0+

where Eg denotes the extension of eg |k, to NGo(MO)(F)[

xOL\{O

d
ECEO‘]\[ O(M )(F [z() H O(M )(F)[ZO

7 1—1
where E?O /%" denotes the character introduced in Definition m

Proposition 4.3.4. The restriction of the representation Kys to Kpp agrees with kyy.

Thus, the quadruple (Ko, pao, Kar, par) together with the group N(pMO>§0LMO = N(pr10) o], 0
satisfy Aziom of [AFMO]J.

Moreover, if C admits a nontrivial involution, then Ky is unitary.

Proof. The first claim follows from the definitions of x); and kjp; and Theorem Then the
claim about Axiom of [AFMO] being satisfied follows from the definitions, Lemma and

NGO(MO)(F)[ZQ]NIQ 2 N(pMO)[:Eo]Mo = KMO
Suppose that C admits a nontrivial involution. According to Remark [£.1.8] we arranged for the
characters ¢; to be unitary for all 0 < ¢ < d. Then the claim follows from Lemma the

7 i—1
definition of Kjs, and the fact that the characters Eﬁ) 9 are unitary for 1 <i <d. O

Proposition 4.3.5. For each x € Agen, we have
IG(F)(px) =Ky - IGO(F)(Pg) Ky =Ky - N(PMO)[J:O]MU - K.

Thus, the families KC° and K satisfy Am’om of JAFMOJ, and the family IC satisfies Amiom
of [AFMO] for N(par)y),, = N(Paro)wo] o

[xo] s
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Proof. The first equality follows from [KY17, Theorem 8.1] and Remark which points out
that the results of Kim and Yu apply to the twisted construction that we use in this section, and
not to the non-twisted one. The second equality follows from [AFMO, Proposition . Using
the definition of K, and p, in this section, we see that Axiom of [AFMQ] is satisfied. O

Now we introduce some groups that will be used to show that the families K° and K satisfy
Axiom of [AFMO].

Notation 4.3.6. Let z,y € Agen with d(z,y) = 1. We denote by H, , € § the unique hyperplane
that satisfies $;y = {Hz,y} and define the compact, open subgroups K3, of G°(F) and K, .0+
of G(F) by Kg,y = K,? and K0+ = Kpoy, where h € H,, is the unique point for which
h=x+t-(y—x) for some 0 <t <1, and K and K}, o1 were defined in and (£.1.3). We
also define the irreducible smooth representation ., of K, , = K%y Ky g0+ = Kp by Kzy = K,
where kj, denotes the representation obtained from the Heisenberg—Weil datum

HW(E) _ ((GO g Gl g_ N g Gd) y (7"0, N ,Td,l), (h,{L}),Kg, ((;50, .. -,defl)) (Td,1 = Td),
" ((GO g_ Gl g_ e g Gd g Gd+1 = Gd) s (7'0, NN ,Td), (h, {L}),Kg, (¢0, PN ,(Z)d)) (Td—l < ’I”d)

via the twisted Heisenberg—Weil construction, see Notation [3.6.3

Lemma 4.3.7. Let x,y € Agen such that d(x,y) = 1. Then the triple (Kg,y,Km7y;0+,K;x’y) mn
Notation [{.3.6 satisfies the following properties:

(1) K2, contains K and K.
(2) Kgy0+ is normalized by the group K9, , and we have

I?y’
Koot C (G(F) N Kyo4) - Kogor  and  Kyor © (GU(F) N Kyo4) - Kayoq-
(3) The group G°(F) N Ky 4.0+ is contained in the kernels of p and ,02.
(4) The restriction of kyy to Ky yo4 is irreducible.
(5) We have isomorphisms

'Kz7y;0+(

| ~y ind%F ) and | 2y ind B Koot
K,y Kg‘Kz,y;(H- n Kz K an Ra,y Kg'Kz,y;O+ 1 Ky Ky)-

Thus, the families K° and K satisfy Aziom of [AFMO].

Proof. Since d(x,y) = 1, the definition of §) implies that we have

rr C GU(F), s

L) L)

(4.3.7a)

z

: ria CGE i CGE
CH(F)y sy € GHF), rs, € GH(F)
for all 0 <i < d and z € {z,y}, where h € H,, is the unique point for which h =z +t- (y — z)

for some 0 < ¢ < 1, as in Notation [4.3.6] The first three claims of the lemma follow from (4.3.7al).
Claim follows from Lemma Claim follows from (4.3.7a)) and Corollary [3.6.14 O
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Recall from Definition of [AFMO)] that a hyperplane H € § is called K-relevant, resp., K°-
relevant if there exists x,y € Agen such that §,, = {H} and ©,,00,, ¢ C- idindcw)(p y» TSP+
Ky Pz

@2|y © @2|z ¢ C- idinng(F)(p @y\x, (C) and O0 are
K

0)’ ylz

defined in [AFMO), §§3.5/4.3]. Following Definition we denote by $x_rel, T€SP-, Hio_re the set
of hyperplanes that are K-relevant, resp., K°-relevant.

where the intertwining operators ©,,, 2|y,

Lemma 4.3.8. We have Hxrel = Dol C 5’)%0, where S is any mazimal split torus of M° such
that zo € A(GY,SY, F).

Proof. The equality follows from Corollary of [AFMOI, whose assumptions are satisfied by

Lemma Proposition Proposition 4.3.5, and Lemma We will prove the inclusion.

Suppose that H € $ ﬁ%o. Then, for all z,y € Agen with $,, = {H}, the definitions of

the family K and the intertwining operator 6)2|m imply that we have (KY,p0) = (KJ,p)) and

@2|x = idindcz( P (0)° Hence, the affine hyperplane H is not K°-relevant, that is, H € 0. O
K9 z

We set N(ppyo) = N(pn0)[zo],,0 and recall from [AFMO!, Definition [3.4.15] that

[zo] 0

W(pMO)Eo]MO = N(PMO)[ZO]MO/(N(PMO)EO]MO n KMO) = N(pMO)[xo]Mo /K ppo

and from [AFMOL Section that Wio_e = (sg | H € $Hyo.re) with set of simple reflections
Sio_rel, see [AFMO] Notation [3.8.1]. Here, for a hyperplane H € ), we let sy denote the corre-
sponding reflection. Similarly, given a reflection s of A;,, we let Hy denote the hyperplane fixed
by s.

Proposition 4.3.9. The group W (pypo) satisfies Aziom |3.7.1| of [AFMO] with a normal

[z0] 50

subgroup W (pp0)agt of W(pMo)gO]MO, and the family K° satisfies Aziom|3.8.4 of [AFMO] with the
group Kg’c’s = KO for each s € Sxo_ and x € Agen such that g ¢ = {Hs}.

T,sx

Proof. Since the set of affine hyperplanes ﬁ%o C Ay, used to define the set of generic points in
the depth-zero setting in [AFMO] Section is a subset of £, our set Agen of generic points is
contained in the set of generic points used in [AFMO)] Section [5.2]. Therefore, the proposition

follows from [AFMO), Proposition [5.3.5] and Lemma [4.3.8 O

While we are now already in position to conclude the main result of this subsection, Theorem

4.3.11] let us first note a corollary of Proposition based on [AFMO) Section [4.4].

Corollary 4.3.10. The family K satisfies Aziom|3.8.2 of [AFMO] with N(pM)[Q;O]M = N(pa19) o] 1,0
and the group K;’S = K s, see Notation 4.3@, for each s € Sioq and x € Agen such that
~6x,sx = {Hs}

Proof. The corollary follows from [AFMO, Lemma [4.4.3]. Note that we can apply the lemma
because the family K satisfies Axioms [3.4.1) and [3.4.3| of [AFMO] by Proposition the family
KC satisfies Axiom of [AFMO] by Lemma Axioms 4.1.2| |4.2.1] and 4.3.1] of [AFMO)] are
satisfied by Proposition Proposition and Lemma and Axioms and of
[AFMO] for K° hold by Proposition [4.3.9] O
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Theorem 4.3.11. There exists a support-preserving algebra isomorphism
I: H(GO(F), pY,) — H(G(F), pay)-

If C admits a nontrivial involution, then there exists such an isomorphism that preserves the cor-
responding anti-involutions on both sides defined in [AFMO, Section :

Proof. The statement follows from [AFMO, Theorem and Corollary 4.5.2], whose assump-

tions are satisfied by Proposition Lemma [4.3.2] Proposition [£.3.9] Proposition [£.3.4] Propo-
sition 4.3.9, and Lemma |4.3.7 O

The isomorphism Z in the above theorem is described more explicitly in [AFMO, Theorem |4.4.11].

4.4 The structure of Hecke algebras attached to the types constructed by Kim—Yu

Since we have shown that all the axioms of Sections |3[ and |4 of [AFMO] are satisfied in the setting
of the present section, we also obtain that the Hecke algebras attached to (K2, p%) and (K, puy)
are isomorphic to a semi-direct product of a twisted group algebra with an affine Weyl group.

Theorem 4.4.1. We have isomorphisms of C-algebras
H(G(F), pay) = H(GO(F), ) = C[paro) "] % He (W (pago)ass, ),

where

e Q(pyo) denotes the subgroup of length-zero elements of W(pMo)? ] defined in [AFMO,

0/ pr0
Notation ,

e u7’ denotes the restriction to Q(ppro) X Qppro) of the 2-cocycle introduced in [AFMO, No-

tation for a choice of a family T° satisfying the properties of [AFMO, Choice
for the pair (Ko, ppo) and the collections of operators {®%} and {®V} defined on page |69
of [AFMOJ,

e ¢ denotes the parameter function s — qs appearing in [AFMO, Choice[3.10.5(3)],

o C[QUpan), uT"] denotes the twisted group algebra recalled in Notation (@ of [AFMO,
and

o He(W(paro)ast,q) denotes the affine Hecke algebra with C-coefficients associated to the affine
Weyl group W (pppo)age with set of generators Syo_.q and the parameter function q recalled in

Notation[3.10.8(d) of [AFMO].

If C admits a nontrivial involution, then we can choose T° as in [AFMO, Choice , and

the above isomorphisms can be chosen to preserve the anti-involutions on each algebra defined in

JAFMO, Section .

Proof. The statement follows from [AFMO, Theorem [3.10.10| and Proposition [3.11.7], whose as-
sumptions are satisfied by Proposition Lemma Proposition Proposition
and Corollary [4.3.10 O
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4.5 Application: Reduction to depth zero

In this subsection we assume that C = C. (We only do so because the literature on types currently
makes this assumption.) By [KY17, Theorem 7.5] and [Fin21a] the pair (K, pz,) is an &(X)-type
for a finite subset &(X) of the inertial equivalence classes J(G) for G and the pair (K2, p ) is an
So(X)-type for a finite subset &o(X) of the inertial equivalence classes J(G°) for G°. We denote
by Rep®®)(G(F)) and Rep®*)(GO(F)) the corresponding union of Bernstein blocks that were

recalled in [AFMO), Section [4.6].

Corollary 4.5.1. We have an equivalence of categories Rep® ™) (G(F)) = Rep® ™) (GO(F)).
Proof. Apply [AFMO| Theorem | to the pairs (Kgo, pgo) and (K, Pag)- O

Combining Corollary with the exhaustion result in [Fin21b], we obtain that if p is large
enough, every Bernstein block is equivalent to a depth-zero block:

Theorem 4.5.2. We assume that p does not divide the order of the absolute Weyl group of G.
Then for every inertial equivalence class s € J(Q), there exists a tamely ramified twisted Levi
subgroup G° of G and so € J(G°) such that the full subcategory Rep™ (G°(F)) consists of depth-
zero representations, and we have an equivalence of categories Rep®(G(F)) — Rep® (GO(F)).

Proof. According to [Fin21b, Theorem 7.12] and the assumptions, for any s € J(G), there exists a
G-datum ¥ such that {s} = &(X). Then the theorem follows from Corollary O

Remark 4.5.3. According to [AFMO] Theorem 4.6.4] and Proposition when restricted to
irreducible objects, the equivalences of categories in Corollary and Theorem preserve
temperedness, and preserve the Plancherel measure on the tempered dual up to an explicit constant
factor.

A Appendix

A.1 Decomposition of a symplectic space over F,: generalization of an argument of
Yu

In this appendix, we generalize the arguments in [Yu0Oll Section 12 and 13| to prove Lemmam
We use the same notation as in Section i.e., G’ denotes a twisted Levi subgroup of a connected
reductive group G defined over F' that splits over a tamely ramified field extension of F, r is
a positive real number, z,y € B(G',F), and we write Vi = (J, N.Jy) - Jy /Ty and V), =
(Joy N Jy) - Jy /Ty . We explain another description of the spaces V¥ and V), . Let T be a
maximal torus of G’ such that the splitting field E of T is tamely ramified over F' and such that
x,y € A(G',T,E). According to the discussion in the beginning of [YuOl, Section 2] and the fact
that any two points of B(G', F) are contained in an apartment of B(G’, F'), such a torus exists. We
define

O ={ae®(G,T)|aly—=x) <0},

&, ={aed(G,T)|aly—z)=0}U{0},

O3 ={ae®(GT)|aly—=z)>0}.
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For i = 1,2,3, we define ®, = ®; N (®(G',T) U {0}) and @/ = ®; \ ®,. We define the function

r (aed)),
fir ®(G,T)U{0} — R by fila)=45 (aec®)),

oo (otherwise).

As explained in [YuOll Section 13], the functions fi, f2, and f3 are concave. For ¢ € {1,2,3}, we
denote the subgroup G(F),. s, by Jy;, and the image of J,; in J,/J, + by Vi. According to (the
same arguments used to prove) [YuOl, Lemma 13.6] (applied to the more general case where x and
y are not necessarily in the same G’(F')-orbit), the spaces V; and V3 are totally isotropic subspaces
of J,/Jy + and orthogonal to V5 with respect to ( , )y, and we have

Jy/Jy+ =Vi®Vad Vs,
vy, - 1.

For a subspace W of J,/J, +, let W+ denote the orthogonal complement of W in J,/J, + with
respect to ( , ). Then we have

(VY ) =V cvie =V (A.1.1a)
On the other hand, we claim that
dim[gp(‘/l) + dim[pp (Vl D ‘/2) = dime(Jy/J%_;,_). (Allb)

This can be proven by the arguments in the proof of [YuOIl Lemma 12.8]. More precisely, since
Jy/Jy+ = Vi @ Vo @ V3, it suffices to show that dimg, (V1) = dimg,(V3). Since Vi © Vo @& V3
is non-degenerate and VQJ- D V1 & V3, we obtain that V5 is non-degenerate and VQL =V & Vs.
Since V; and V3 are totally isotropic subspaces of the non-degenerate space V2L =V & Vs, we
have dimg, (V4),dimg, (V3) < 1 dimg, (V4 @ V3). Thus, we obtain that dimg, (V1) = dimg,(V3) =
% dim]Fp(Vl ©® ‘/3)

Equation (A.1.1b) implies that dimg, (V%) = dimg, (Vi ® V3). Combining this with (A.1.1a]), we
obtain V- = Vi @ V4 and see that Lemma holds true.

A.2 The quadratic twist is necessary

In this appendix, we give an example to show that our main theorem, Theorem would not be
true in general if we replaced p, by pgg, i.e., if we omitted the quadratic twist in the construction
of pz,. Assume ¢ = 0 and recall that p # 2. Let G = Sp, over F' corresponding to the symplectic
pairing given by
0
0
/= 0

o= O O
o |

—
o O O =

—1

o1



Let T be the maximal torus of G defined as

tt 0 0 0
~Jlo ta 0 o0
T= 0 0 t;' 0

0 0 0

Let 0 € A(G, T, F) be the point such that G(F),o = Sps(Or). We identify A(G,T, F) with R?
via the bijection R? ~ A(G, T, F) defined by (x1,z2) = o + z1a) + xaay, where o) and oy are
cocharacters of 1" defined as

0
0
Vg
aj (t) = 0 1

0

OO O o+
SO = O
O = O O
SO O =
O O + O

(e}
= o O O

1
. . / _ 2 _(_1 1 (11

respectively. We define points zo, 2, € A(G, T, F) =R” as ¢ = ( I 16) and x; = ( T 4).

We fix a uniformizer 7p of F, and let wp be an element of F such that w% = mp. We also fix

an element /2wy in F such that \/2wF2 = 2wp. Let E = F(\/2wp). We define an element
X € Lie*(G)(F) by

Lie(G)(F) 3 (Aij) — np' - Aya + Asy.
We define a twisted Levi subgroup G° of G as the centralizer of X in G. Then we have

a Oix2 b
GO = O9x1  SLa  09x1 a’® — b27'r1;1 =17 ~ U(l) x SLoy .
bﬂ'gl O1x2 a

We also define a Levi subgroup MY of G° as

a 0O 0 b
0 t 0 0
0_ 2 32 -1 _
M = 0 0 +1 o a by 1
bw;l 0 0 a
We note that MY is a maximal torus of G° and G. Moreover, we have M 0— ng_l7 where
e 0 0 5
_ 0 1 0 0
9= o o1 o0
100 1=
\/QWF \/QWF

Let M denote the centralizer of A, in G. Then we have

AMO -

o O O

SO+ O
~
o
—

= o O O
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and

a 0 0 b
0t 0 O a b
M=9310 0 +1 0 <c d>ESL2
c 0 0 d
We define characters ap and g of T as
ty 0 O 0 t7y 0 O 0
0 to O 0 9 0 t2 O 0 9
o 00 ' 0 =17 and fo%) 0 0 ' 0 = t3.
0 0 0 ¢! 0 0 0 ¢!
Then we have
®(G,T) = {j:al,iozg,j:al ;r @2 LN ;0‘2} and  ®(M,T) = {+a1}

We fix a commutative diagram {¢}

B(GY, F) — B(G, F)

| |

B(M° F) —— B(M, F)
of admissible embeddings of buildings and identify a point in B(MY, F) with its images via the
embeddings {¢}.
Lemma A.2.1. The element X is G-generic of depth —% in the sense of [Fin, Definition 3.5.2]
for the pair G° C G, and the points xo and z{, are contained in (the image of) B(M°, F).

Proof. The first claim follows from the same argument as the proof of [Fin21a, Lemma 4.1]. The
proof of [Fin2lal Lemma 4.1] also implies that

2o =9(0,7) € A(G.gTg™", E) = B(M", E).
Thus, we conclude that zj, € B(G, F) N B(M°, E) = B(M°, F). Then we also have
z0 = 3 — oy € 2 + (Xi(App) @z R) C B(M°, F). O

Remark A.2.2. Since z, = g (0, %) and the element g € M (F) acts trivially on X, (Ayp) @z R,
we also obtain that g = g (0, 1—16)

We define a character ¢ of Lie(GO)(F)moé by ¢(Y) = U(X(Y)). Since X is G-generic of depth —3,

the character ¢ is trivial on Lie(G®)(F), 1. Hence, by using the Moy-Prasad isomorphism
2

o

GO(F) 1 /GO(F) gy 14 = Lie(GY)(F),, 1/ Lie(G%)(F) 4y 1,

1
0,5
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we can also regard ¢ as a character of GO(F )zo,1 that is trivial on GO(F) Moreover, the
’2

1 .
I07§+
definition of X implies that the character ¢ is trivial on the subgroup

1 01x2 0
021 SLQ(F) 021 ﬂGO(F)xOé
O 01><2 1

of GO(F)Z'(),%' Since U(1) is abelian, we can extend ¢ to a character of G°(F) ~ (U(1) x SLy) (F)
that is trivial on the subgroup

1 O1x2 0
O2x1 SLa(F) 0O2x1
0 01><2 1

of G°(F). We use the same notation ¢ for this extension. Since X is G-generic of depth —%, the
character ¢ is G-generic relative to o of depth 7 := 3 in the sense of [Finl Definition 3.5.2].

Lemma A.2.3. The diagram of embeddings {.} is ((), %) = (0, i)—genem’c relative to xo in the
sense of [KY17, 3.5 Definition].

Proof. We will prove that for all o € ®(G,T) ~ ®(M,T) and t € {0,1/4}, we have Uy(E)got =
Uo(E)zg,t+- Noting that

Ua(E)Ioﬂf = Ua(E)o,t_<O"_%aY+T16a2v>’

it suffices to show that (o, —1aY + {cay) € 1Z for all @ € ®(G,T) \ ®(M,T). This follows from
the calculations
<iag, —%alv + %6045/> = i%,
(9592, — 0] + 508) = Fig -
(9592, —jaf + 503) = Fp:

We define a compact, open subgroup K3 of G'(F) as KJ = G°(F)g0, and let pQ  denote the
trivial representation of K . We also write pyso for the trivial representation of M°(F),, 0. Let
(K, pot) denote the pair constructed from the G-datum

(G c G, M), (3, 3), (z0. {e}), (MO (F)uy 0, paro), (¢, 1))
in Section E.11

Proposition A.2.4. There is no support-preserving algebra isomorphism
H(GO(F), py,) — H(G(F), p5) -

Proof. Since (K, pit) agrees with the pair (K, ps,) obtained by replacing the above G-datum
by the following twisted one

((GO - G7 MO)’ (%7 %)’ (1‘0, {L})’ (MO(F)Z’0707 6xGO/GO‘MO(F‘)z-o,())? (¢7 1))
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in the construction in Section according to Theorem we have a support-preserving
algebra isomorphism .
H(GO(F), /%) = H(G(F), ).

E )

Hence, it suffices to show that there is no support-preserving algebra isomorphism

H(GO(F), p2,) > H(GO(F), 5/,

Let
1 0 00
o 0 10
|0 -1 0 0
0 0 01
Then we have
a 0 0 b a 0 0 b
0 OF O 0 _ 0 O prp 0
0 _ F F 0 0 1 _ F F 0
K, = 0 pr O 0 NG"(F) and sK, s = = 0 Op O 0 NG (F).
bt 0 0 a bt 0 0 a
Hence, we can take a set of representatives for K2 / (K2 NsK2 s7') as {u(z) | € f}, where
1 0 0 O
01 z O
“Un=1p 0 1 0
0 0 01
Suppose that there is a support-preserving algebra isomorphism H(G%(F), p2,) — H(G°(F), efo/ G ).
Then we can take ¢1 € H(GO(F),p},) and ¢g € H(GO(F),GJC;;O/GO), both supported in K sKJ

such that 1 and o satisfy the same quadratic relation. Let ¢ = @1 or ps. We can calculate the
convolution product (¢ * ¢)(s) as

(pre)s)= > eh) el = > olks) - (s~ k"s)
heK9, sK9 /K9, keKY, (KgoﬂsKgorl)
= 3 p(u(@)s) - (s u(—a)s).
zEef

For x € Op, we have

10 00
0100
-1,/ _
s u(—x)s 0z 1 0
0 0 01
A standard calculation implies that s~lu(z)™1s € Kgo sKgo if and only if 2 € O}, and in this case,
we have
1 0 0 0 10 0 O
0 —2z7! -1 0 01 71 0
-1 1, _ e, _ V1Y, |
s u(x) s = o o -zo0l%1loo 1 o ay (—z7 1) ~u(x) - s-ulz™).
0 0 0 1 0 0 1
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G/GO

Since €5y~ is a sign character, it is trivial on the pro-p-group {u(z) |z € Op} ~ Op. Hence,
according to Lemma below, we have

_ _ 0 _ 0 _
2 (e (=) - u(@) - s u(@)) = /9 (af (—a7) - u(@)) - pals) - €5/ (u(z™))
= sgnf(—a:_1 mod pr) - pa(s)
for all z € Of. Thus, we obtain that

(p ) (s)= Y plu)s) - p(s  u(-a)s)

refx
=3 eu(z)s) ¢ (g (—27") - u(x) - s - u(z))

TefX
:{zmﬁw@»w@> (= 1),
D vepx p2(8) -seni(—2 1) - pa(s) (o= w2)

_{m@fzmvl (¢ = 1),
P2(5)* 2 pejx sgni(x) (= p2)
_{@”ﬂfmﬁf(wzw%

0 (<P = <P2)-

In particular, we obtain that

(p1*xp1)(s) #0  and (2 p2) (5) =0,

which contradicts the fact that ¢; and (o satisfy the same quadratic relation. O

Now we take care of the last piece of unfinished business from the proof of Proposition [A.2.4]
Lemma A.2.5. Let t € Of. Then we have

Proof. We define characters 3; and 35 of M as

a 0O 0 b a 0O 0 b

0 t 0 0 _ —1\2 0 t 0 0 2

B 0 o0 +! o = (a+bwy") and Bo 0 0 +! o =t
bt 0 0 a bt 0 0 a

Then we have

51+52,iﬁ1_ﬁ2
2 2

@(G,MO,E):{iﬁl,iBQ,i } and  ®(G°, MO, E) = {£f,}.

We define ®(G/G° M°) = &(G, M°, E) \ ®(G°, M°, E), and we denote by ®(G/G° M°)asym,
d(G/GY, MO)Symum«, and ®(G/GY, MO)Sym,ram the set of roots in ®(G/G°, M) that are asymmet-
ric, unramified symmetric, and ramified symmetric in the sense of [FKS23|, Section 2], respectively.

Then we have
:l:/Bl +ﬂ2,iﬁ1 — B2 7
2 2

(G/G, M) asym = {
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(I)(G/Goy Mo)sym,unr - ®>

and

(I)(G/Goa Mo)sym,ram = {iﬂl} .
Since 2o = g (0 L ) and B;(gtg™") = a;(t) for i = 1,2 and for all t € T', we obtain that

» 16
(€252 o + o) = (£242.9- ol

+az 1.V
= <ia12a2v EO‘2>
a1
=tk

1
¢ 772

Similarly, we have <i%, —iaf + %a¥> = :F% & iZ. Thus, we conclude that § = % ¢ ord,, (B)

for all B € ®(G/GO MP),5ym, Where ord,, (8) denotes the set defined in [FKS23, Section 3]. We
also note that we have 81 (ay (t)) = 1 and the restriction of any element in ®(G/GY, M?),sym to the
center Z(G9)/{£1} of GY/{%1} is ramified symmetric. Then according to [FKS23, Definition 3.1,
Theorem 3.4], we have

650/(;0(@5/ () = Sgnf(ﬁ(aé/(t)) mod pp) = Sgnf(t mod pr),

where 3 denotes any element in ®(G/G%, M?)asym. O

Remark A.2.6. Since the image of oy is contained in the center of M, we have M/ M (ay(t) =1

0 0
for all ¢t € O. In particular, we obtain that eg)/G |M0(F) 0y 0 # e%/M .
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Selected notation

< ) >$7
(] [

Ac,[7]
Agem @
Axoa @

C (coefficient field),

(-, ), {44
027

&1 by

&/ ol 10l
~G/G’ 20

€xg )

G’gsym,ram,m
ares

FOCM/? @
F:I:aMn E

GO, jaq]

H(G(F),p),[]
9, 14
m,y,@l
arl 1/2» w
( ) M, [41]
1‘7

id,
Lps |2;3|

jxa@
Iz, 2]

Jx7+’ w
JZ,
KM:@
K’Ma
iEE
tix, 34, B2
Fﬂ:c,z,n@
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¢ (characteristic of C), [7]

M, [0
MO, l40]

N(pMO)[xo]M()?

wma@
wZ?

(I)aff(Gas)vlﬂ
(G, S) [
o

%,

(addltlve character F' — C*),
Py,

0y,

P, B2

pMW@

ot [42)

pma@

r(y — x; O t),

S’Co-rela @

SO\ E
¥, [
Y, (]

0z, [39)



E), [T
o
(M), [T
(v, gl
144 I

Vi 2
W(pMO)affv

(16
g(y.— x; OM’;t)a

S&ES
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