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Abstract

Let F be a non-archimedean local field of residual characteristic p. Let G denote a connected
reductive group over F that splits over a tamely ramified field extension of F . Let (K, ρ) be a
type as constructed by Kim and Yu. We show that there exists a twisted Levi subgroup G0 ⊂ G
and a type (K0, ρ0) for G0 with ρ0 of depth zero such that the corresponding Hecke algebras
H(G(F ), (K, ρ)) and H(G0(F ), (K0, ρ0)) are isomorphic. If p does not divide the order of the
absolute Weyl group of G, then every Bernstein block is equivalent to modules over such a Hecke
algebra. Hence, under this assumption on p, our result implies that every Bernstein block is
equivalent to a depth-zero Bernstein block. This allows one to reduce many problems about
(the category of) smooth complex representations of p-adic groups to analogous problems about
(the category of) depth-zero representations.

Our isomorphism of Hecke algebras is very explicit and also includes an explicit description
of the Hecke algebras as semi-direct products of an affine Hecke algebra with a twisted group
algebra. Moreover, we work with arbitrary algebraically closed fields of characteristic different
from p as our coefficient field.

This paper relies on a prior axiomatic result about the structure of Hecke algebras by the
same authors, and a key ingredient consists of extending the quadratic character of Fintzen–
Kaletha–Spice to the support of the Hecke algebra, which might be of independent interest.
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1 Introduction

The category of all smooth complex representations of a p-adic group decomposes as a product of
indecomposable, full subcategories, called Bernstein blocks, each of which is equivalent to modules
over a Hecke algebra under minor tameness assumptions. Therefore knowing the explicit structure
of these Hecke algebras and their modules yields an understanding of the category of smooth rep-
resentations. While these Hecke algebras are known for GLn and in that case played an important
role in the representation theory, comparatively little has been known for general reductive groups.
An exception are the Bernstein blocks that consist only of depth-zero representations. For those
blocks, a description of the attached Hecke algebras has essentially (for details see [AFMO]) been
known for over 30 years, thanks to work of Morris ([Mor93]). In this paper, we show that the above
Hecke algebra attached to an arbitrary Bernstein block is isomorphic to a depth-zero Hecke algebra
under the above minor tameness assumptions, which we assume to hold for the next few sentences.
Therefore we now have an explicit description of all those Hecke algebras. Moreover, as a direct
consequence of the Hecke algebra isomorphism, we obtain an equivalence between arbitrary Bern-
stein blocks and depth-zero Bernstein blocks, which allows one to reduce a plethora of problems in
the representation theory of p-adic groups and beyond, including in the Langlands program, to the
depth-zero setting, where solutions are often easier to obtain or are already known.

We obtain the Hecke algebra isomorphism between arbitrary and depth-zero Bernstein blocks by
verifying the relevant axioms of [AFMO] to allow us to apply the general Hecke algebra isomorphism
of [AFMO]. This involves as a key step the extension of the quadratic character of [FKS23] to a
group of double-coset representatives for the whole support of the Hecke algebra, a result that might
be of independent interest to mathematicians in this area. It also involves the study and extension
of Heisenberg–Weil representations that is expected to have applications beyond this paper.

The Hecke algebra isomorphisms as well as the extensions of the quadratic character and the
Heisenberg–Weil representations are all described in an explicit way, making them suitable for a
large range of future applications.

To explain our results in more detail, we fix a non-archimedean local field F with residual charac-
teristic p and denote by G a connected reductive group over F that splits over a tamely ramified
extension of F . In this introduction we consider smooth representations with complex coefficients
for simplicity, but all results about Hecke algebra isomorphisms are also proven with C-coefficients
for an arbitrary algebraically closed field C of characteristic different from p. In the complex case,
by Bernstein ([Ber84]), the category Rep(G(F )) of smooth representations of G(F ) decomposes
into a product of indecomposable, full subcategories, Reps(G(F )), that are called Bernstein blocks
and that are indexed by the set of inertial equivalence classes I(G), i.e., equivalence classes [L, σ]
of pairs (L, σ) consisting of a Levi subgroup L of (a parabolic subgroup of) G and an irreducible
supercuspidal representation σ of L(F ):

Rep(G(F )) =
∏

s∈I(G)

Reps(G(F )).

A pair (K, ρ) consisting of a compact, open subgroup K ⊂ G(F ) and an irreducible smooth repre-
sentation (ρ, Vρ) of K is called an s-type for s ∈ I(G) if Reps(G(F )) contains precisely those smooth
representations π of G(F ) such that every irreducible subquotient of π contains ρ upon restriction
to K. If (K, ρ) is an s-type, then we have an equivalence of categories between Reps(G(F )) and
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the category of right unital H(G(F ), (K, ρ))-modules:

Reps(G(F )) ' Mod-H(G(F ), (K, ρ)),

where H(G(F ), (K, ρ)) denotes the Hecke algebra attached to (K, ρ), i.e., as a vector space the
collection of all compactly supported, EndC(Vρ)-valued functions on G(F ) that transform on the
left and right under K by ρ. The algebra structure on H(G(F ), (K, ρ)) is given by convolution, see
[AFMO, Section 2.2] for details.

Building upon the construction of supercuspidal representations by Yu ([Yu01]) and using the theory
of covers introduced by Bushnell and Kutzko ([BK98]), Kim and Yu ([KY17, Fin21a]) provide a
construction of types. This construction yields types for every Bernstein block if p does not divide
the order |W | of the absolute Weyl group W of G by [Fin21b]. Thus, understanding the structure
of the corresponding Hecke algebras H(G(F ), (K, ρ)) and their categories of modules leads to an
understanding of the whole category of smooth representations of G(F ) if p - |W |. The input for the
construction of Kim and Yu includes a twisted Levi subgroup G0 ⊂ G, a compact, open subgroup
K0 ⊂ G0 that contains a parahoric subgroup of G0(F ), a depth-zero representation ρ0

KY of K0, and
a positive-depth (or trivial) character of G0(F ), satisfying various conditions, see Definition 4.1.1
for details. The pair (K0, ρ0

KY ) is a type for a Bernstein block of G0 that consists of depth-zero
representations. To a given input, Kim and Yu then attach a compact, open subgroup K ⊂ G(F ),
which satisfies K ∩ G0(F ) = K0, and a representation ρ = ρ0

KY ⊗ κnt, where ρ0
KY is viewed as a

representation of K via an appropriate inflation and κnt is an irreducible smooth representation
constructed from the positive-depth character via the theory of Heisenberg–Weil representations.
(We caution the reader that what we denote by ρ and ρ0

KY here for simplicity is denoted by ρnt
x0

and ρ0
x0 in the main part of the paper.)

We set ρ0 = ρ0
KY ⊗ ε, where ε (denoted by ε

−→
G
x in Section 4.1) is a quadratic character introduced

by [FKS23]. Then our main result, Theorem 4.3.11, is the construction of an explicit, support-
preserving algebra isomorphism

H(G(F ), (K, ρ))
∼−→ H(G0(F ), (K0, ρ0)). (1.1)

We provide an example in Appendix A.2 that shows that twisting ρ0
KY by ε is necessary, i.e., the

above isomorphism would not always hold if we replaced ρ0 by ρ0
KY . As a direct corollary, we obtain

that if p - |W |, then an arbitrary Bernstein block is equivalent to a depth-zero Bernstein block.
We also remind the reader that we have an explicit description of the structure of the depth-zero
Hecke algebra

H(G0(F ), (K0, ρ0)) ' C[Ω(ρM0), µT
0
] nH(W (ρM0)aff , q) (1.2)

by [AFMO, Theorem 5.3.6], which is a generalization of prior work of Morris ([Mor93]), and hence
we obtain an explicit description of the structure of H(G(F ), (K, ρ)) by combining (1.1) and (1.2).
We refer the reader to the introduction of [AFMO] or to Theorem 4.4.1 for the details of the
notation on the right-hand side of (1.2).

The isomorphism (1.1) is obtained by applying the general result [AFMO, Theorem 4.4.8] about
Hecke algebra isomorphisms to the setting of this paper, which requires checking all the relevant
axioms of [AFMO]. Most of the axioms follow easily from the construction of Kim and Yu, ex-
cept those that deal with the (extension of the) twisted Heisenberg–Weil part κ := κnt ⊗ ε in the
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construction. In order to apply [AFMO, Theorem 4.4.8] we need to construct a whole compati-
ble family of twisted Heisenberg–Weil representations, see Corollary 3.6.14 for the compatibility
with respect to compact induction that we require. The existence of such a compatible family
relies crucially on the quadratic twist ε of [FKS23]. Moreover, we need to show that the twisted
Heisenberg–Weil representation extends to a group of double-coset representatives of the support
of the Hecke algebra H(G(F ), (K, ρ)). These results are expected to be of independent interest.

To provide a few more details about the last result, we fix an [M,σ]-type (K, ρ) as constructed by
Kim and Yu for some [M,σ] ∈ I(G). Then (K0, ρ0) is an [M0, σ0]-type for a Levi subgroupM0 ⊆ G0

and a depth-zero supercuspidal representation σ0 of M0(F ). If the representative M is chosen with
care, thenM0 = M∩G0. Moreover, K0 is the stabilizerG0(F )x inG0(F ) of a point x in the enlarged
Bruhat–Tits building of M0 that we view as a subset of the enlarged Bruhat–Tits building of G0.
We denote by NG0(M0)(F )[x]M0

the subgroup of the F -points of the normalizer of M0 in G0 that

preserves the image [x]M0 of x in the reduced Bruhat–Tits building of M0. This group normalizes
KM := K ∩M(F ) and contains a set of double-coset representatives for the support of the Hecke
algebras H(G0(F ), (K0, ρ0)) and H(G(F ), (K, ρ)). A key result in this paper, see Definition 4.3.3
and Proposition 4.3.4, is the construction of a representation κ̃M of NG0(M0)(F )[x]M0

· KM that
restricted to KM agrees with the twisted Heisenberg–Weil representation κ|KM (which is defined
in detail on page 42 in Section 4.1). This construction involves, in particular, the extension of the
quadratic character ε to a character ε̃ of NG0(M0)(F )[x]M0

·KM , which is achieved via Definition
2.7.1 and Theorem 2.7.2. The character ε̃ has its image contained in the fourth roots of unity but
cannot always be chosen to be quadratic.

We briefly sketch some of the steps in the construction of ε̃. The character ε was defined as a
product of three characters in [FKS23] and we take as our starting point their reinterpretation as
the composition of a map to the orthogonal group of a quadratic space over the residue field f of F
with the spinor norm. For one of the three characters we can reinterpret the quadratic space in such
a way that we can extend the action ofKM on it to an action ofNG0(M0)(F )[x]M0

·KM that preserves
the quadratic form, which is done in Section 2.3. For the other two factors we consider and extend
only their product, combining the two underlying quadratic spaces into a new larger quadratic
space Vx. Since the group NG0(M0)(F )[x]M0

does not fix the point x, the construction of an action

of NG0(M0)(F )[x]M0
on Vx involves a careful construction of compatible isomorphisms between Vx

and Vy for y in the NG0(M0)(F )[x]M0
-orbit of x, which is achieved in Section 2.5. Unfortunately,

the resulting action of NG0(M0)(F )[x]M0
on Vx does not always preserve the quadratic form on

Vx used for the construction of the spinor norm and also only yields a morphism of Vx viewed as
an f[

√
−1]-vector space, not as an f-vector space in general. At the same time, the image of KM

acting on Vx is not the full orthogonal group. We construct a new group that contains the image of
KM in the orthogonal group of Vx and also the image of NG0(M0)(F )[x]M0

in GL(Vx)(f[
√
−1]) and

succeed in extending the restriction of the spinor norm to this larger group, see Section 2.6. This
then yields the desired extension ε̃ with values in the group of fourth roots of unity. If f contains a
square-root of −1, i.e., f[

√
−1] = f, then the extension ε̃ is a quadratic character.

We point out that the Hecke algebras associated with types have been already previously heavily
studied in special cases, see [AFMO, §1.2] for more details. The reduction to depth-zero isomor-
phism (1.1) was already achieved for GLn by Bushnell and Kutzko ([BK93]) and is an important
tool for a variety of applications, including its recent use in the construction of a part of a categorical
local Langlands correspondence ([BZCHN24]). Moreover, for more general reductive groups, our
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isomorphism 1.1 was previously obtained by Roche ([Roc98]) in the case where F has characteristic
zero, G is a split reductive group, and the above introduced Levi subgroup M is a maximal split
torus; by Adler–Mishra ([AM21]) in the more general situation where the connected part of the
center of G0 is split modulo the center of G and the underlying supercuspidal representation of a
Levi subgroup is regular; and by Ohara ([Oha24]) in the case of supercuspidal blocks, i.e., the case
where M = G. Obtaining a general result (1.1) beyond special cases has been an open problem for
more than 20 years, and indeed it can be thought of as a sharper version of Conjectures 0.2 and 17.7
in [Yu01]. However, the literature contains a discussion of a particular Hecke algebra (see [GR05,
§11.8]) that appears to be too complicated to agree with the seemingly simpler Hecke algebras of
depth-zero Bernstein blocks. This led to a large part of the mathematical community working in
this area believing that (1.1) cannot be true in full generality (which we however now prove to be
the case in this paper), but still wishing for weaker form of it to be true, yet not knowing what
form this would be. We will address these concerns in a separate paper [AFO] explaining why the
observations in [GR05] do not lead to a contradiction to our results.

Structure of the paper and guidance for the reader

Section 2 concerns the extension ε̃ of the quadratic character ε. We have summarized the result
about the extension ε̃ of ε in the first page of Section 2. Thus, a reader mostly interested in the
statement and not the details of the construction and proofs (even though they mark the core of
our paper) is welcome to read this one page and skip the subsections of Section 2 on a first reading.

In Section 3 we introduce families of Heisenberg–Weil representations and prove various compat-
ibility and extension results for those representations. Sections 2 and 3 are independent of each
other and can therefore be read in any order.

In Section 4.1 we recall the construction of Kim and Yu, but we allow more general coefficients and
include a twist by the quadratic character of [FKS23] in the construction. The remainder of Section
4 is then concerned with verifying all the necessary properties in order to obtain the isomorphism
(1.1). While the proofs crucially rely on the results of Sections 2 and 3, we have written Section 4
in way that a reader who is already a bit familiar with the construction of Yu ([Yu01]), and who is
willing to simply believe our results from Sections 2 and 3 on a first reading, can start by reading
Section 4.

Appendix A.1 spells out some technical details that, while too similar to work of J.-K. Yu to be
original, are also too elaborate to be left to the reader.

In Appendix A.2 we provide an explicit example that shows that our main result (1.1) would not
be true in general if we omitted the twist by the quadratic character ε.
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Notation

Let F be a non-archimedean local field endowed with a discrete valuation ord on F× with value
group Z. We fix a separable closure F of F . When we refer to a separable field extension E/F , we
always assume that E ⊂ F . For any such field extension E, we denote the unique extension of ord
to E× also by ord. We write OE for the ring of integers of E and pE for the maximal ideal of OE .
We also write f for the residue field of F , and let p denote the characteristic of f.

If L is any field, and L′ is any Galois field extension of L, then we let Gal(L′/L) denote the
corresponding Galois group.

We denote by R and C the fields of real and complex numbers, respectively, and we write C
for an algebraically closed field of characteristic ` 6= p. Except when otherwise indicated, all
representations below are on vector spaces over C. We fix an additive character Ψ: F −→ C× that
is trivial on pF and non-trivial on OF .

We also adopt the fairly standard notation that was defined in [AFMO, §§2.1–2.2] for the following
symbols: Z(G), AG, NG(M) and ZG(M), indHK(ρ), IH(ρ) and NH(ρ) for a representation ρ of a
subgroup of a group H, and the Hecke algebra H(G(F ), (K, ρ)) = H(G(F ), ρ). As in [AFMO, §2.1],
by U(M) we denote the set of unipotent radicals of all parabolic subgroups of G with Levi factor
M .

For a linear algebraic group G over F and an algebraic field extension E of F , we write GE for the
base change of G to E. We also denote by Lie(G) the Lie algebra of G and by Lie∗(G) the dual
of Lie(G). We write Lie∗(G)G for the subscheme of Lie∗(G) fixed by the coadjoint action of G on
Lie∗(G).

Suppose that G is a connected reductive group defined over F . For a torus S of G, we denote
by X∗(S) the (algebraic) cocharacter group of SF , and we denote by Φ(G,S) the set of non-zero
weights of SF acting on the Lie algebra Lie(G) of G equipped with the action of the absolute
Galois group Gal(F/F ) of F . In particular, if S is a maximal split torus of G, then the set Φ(G,S)
denotes the relative root system of G with respect to S. In this case, we also let Φaff(G,S) denote
the relative affine root system associated to (G,S) by the work of Bruhat and Tits ([BT72]).

We denote by B(G,E) the enlarged Bruhat–Tits building of GE , and for a maximal torus S of
G that splits over E, we let A(G,S,E) denote the apartment of SE in B(G,E). We also write
Bred(G,E) for the reduced building of GE and Ared(G,S,E) for the apartment of SE in Bred(G,E).
If x ∈ B(G,F ), then we write [x]G for the image of x in the reduced building Bred(G,F ), and we
may omit the subscript G when it is clear from the context. For any abstract group H that acts
on G(F ), and thus on B(G,F ) and Bred(G,F ), we let Hx and H[x]G denote the stabilizers of x and

[x]G under the actions of H, respectively. Let R̃ denote the set {r, r+ | r ∈ R} ∪ {∞} with the
obvious ordering and the obvious addition operation (see [BT72, 6.4.1]). Suppose that E/F is a
field extension of finite ramification degree, and S is a maximal torus of G that splits over E. For
x ∈ B(G,E), α ∈ Φ(G,S), and r ∈ R̃ r {∞}, we let Uα(E)x,r denote the Moy–Prasad filtration
subgroup of depth r associated to x of the root subgroup Uα(E), and set Uα(E)x,∞ = {1}. Here,

we use the valuation ord on E×. For x ∈ B(G,E) and r ∈ R̃r {∞} with r ≥ 0, we also let G(E)x,r
be the Moy–Prasad filtration subgroup of G(E) of depth r associated to x (see [MP94, MP96]), and
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set G(E)x,∞ = {1}. We may abbreviate G(E)x,r/G(E)x,r+ to G(E)x,r:r+. We use the analogous

notation for the Lie algebra, where r is allowed to be any element of R̃.

For a representation (ρ, Vρ) of a group H, we identify ρ with its representation space Vρ by abuse
of notation. For any vector space V , we let idV denote the identity map on V .

Throughout the paper we let G be a connected reductive group defined over F . We assume that
G splits over a tamely ramified field extension of F , and that the residual characteristic p of F is
not two. We require these assumptions in order to apply the construction of Kim and Yu, which
uses tameness to be able to work over a splitting field for various arguments, and requires that
p 6= 2 whenever the construction involves the use of nontrivial Heisenberg–Weil representations, as
constructed in Section 3.

2 Extension of the quadratic character of Fintzen–Kaletha–Spice

In this section, we will prove that the quadratic character ε
G/G′
x0 defined in [FKS23, Section 4]

extends to a character of a larger group that contains coset representatives for the support of the
Hecke algebra that we will study in Section 4. This result will be used to prove Axiom 4.1.2(2) of
[AFMO] in the setting of this paper (see Proposition 4.3.4 below), and might also be of independent
interest.

To state the main result of this section more precisely, let G′ be a twisted Levi subgroup of G that
splits over a tamely ramified extension of F , i.e., G′ is a subgroup of G that becomes a Levi subgroup
of a parabolic subgroup of G after base change to an appropriate tamely ramified extension over
which G is split. Let M ′ be a Levi subgroup of G′ and let M denote the centralizer of AM ′ in G.
Then M is a Levi subgroup of G, and M ′ is a twisted Levi subgroup of M . Moreover, we note that
AM = AM ′ .

Note that this notation is different from that of [FKS23], where the authors denote our G′ by M ,
and our M and M ′ do not appear.

We fix a positive real number r > 0. Let x0 be a point of B(M ′, F ) and {ι} be a commutative
diagram

B(G′, F ) �
� //

	

B(G,F )

B(M ′, F )
?�

OO

� � // B(M,F )
?�

OO

of admissible embeddings of buildings in the sense of [KP23, §14.2] such that the embedding
ι : B(M,F ) −→ B(G,F ) is r

2 -generic relative to x0 in the sense of [KY17, Definition 3.2]. Here, and
from now on, we use these embeddings to identify points in buildings of subgroups with points in
the building of the larger groups.

If there exists a character φ of G′(F ) that is G-generic of depth r relative to x0 in the sense of [Fin,
Definition 3.5.2], then we obtain from [FKS23, Lemma 4.1.2] (using [FKS23, Remark 4.1.3]) the
quadratic character

εG/G
′

x0 : G′(F )[x0]G → {±1}.
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In this section (see Definition 2.7.1 and Theorem 2.7.2) we will prove that the restriction of the

character ε
G/G′
x0 to NG′(M

′)(F )[x0]G extends to a character

ε̃G/G
′

x0 : NG′(M
′)(F )[x0]M′

−→ µ4,

where µ4 = {ζ ∈ C× | ζ4 = 1}. Instead of requiring the existence of a G-generic character of depth
r, which will be the setting in which we use the result in Section 4, we will prove this result in the
slightly more general set up of [FKS23] that we recall below.

2.1 Notation

We introduce some additional notation, closely following [FKS23], that will be used throughout
the remainder of this section. Let Gad denote the adjoint group of G and let G′ad, M ′ad, and Mad

denote the images of G′, M ′, and M in Gad, respectively. Let Gsc denote the simply connected
cover of the derived subgroup of G and G′sc denote the preimage of G′ in Gsc. We also write
G′sc,ab = G′sc/G

′
sc,der, where G′sc,der denotes the derived subgroup of G′sc.

We write Eunr for the maximal unramified extension of a separable field extension E of F (in F )
and IE denotes the inertia subgroup of the absolute Galois group Gal(F/E). Let f denote the
residue field of F unr, which is a separable closure of f.

Given a non-degenerate quadratic form ϕ on a vector space V (over f, say), we have the corre-
sponding orthogonal group O(V, ϕ). Let sn: O(V, ϕ)(f) −→ f×/(f×)2 denote the spinor norm as
defined in defined in [Sch85, Chapter 9, Definition 3.4] (see also [FKS23, Section 5.2]).

Let L = M ′ad orG′ad. Then Z(L) is a torus, and we denote by Φ(Gad, Z(L))asym and Φ(Gad, Z(L))sym,ram

the sets of nonzero weights in Φ(Gad, Z(L)) that are asymmetric and ramified symmetric in the
sense of [FKS23, Section 2], respectively. We also write Φ(Gad, Z(L))sym,ram = Φ(Gad, Z(L)) r
Φ(Gad, Z(L))sym,ram. We define Φ(Mad, Z(L))asym, Φ(Mad, Z(L))sym,ram, and Φ(Mad, Z(L))sym,ram

analogously by replacing Gad with Mad.

For αL ∈ Φ(Gad, Z(L)), we denote by Lie(Gad)αL the αL-weight space of Z(L) acting on Lie(Gad).
For αL ∈ Φ(Gad, Z(L)), x ∈ B(L,F ) and t ∈ R, we let E be a tamely ramified field extension of F
such that αL is defined over E and T a maximal torus of L that splits over a tamely ramified field
extension ET of F containing E and such that x ∈ A(L, T,E). Then we write

Lie(Gad)αL(E)x,t =

( ⊕
α∈Φ(L,T ),α|Z(L)=αL

Lie(Gad)α(ET )x,t

)
∩ Lie(Gad)αL(E).

By the discussions in [Yu01, Section 1 and 2], the lattice Lie(Gad)αL(E)x,t is independent of the
choice of the maximal torus T and the field extension ET . We also write Lie(Gad)αL(E)x,t:t+ =
Lie(Gad)αL(E)x,t/Lie(Gad)αL(E)x,t+.

2.2 The quadratic character when G is adjoint

We will prove Theorem 2.7.2 starting with the special case where G is adjoint, so from now on until
§2.7 we assume that G is adjoint. We write s = r

2 .
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We also assume that there exists and fix a G-good element X ∈ Lie∗(G′sc,ab)(F )−r of depth −r in
the sense of [FKS23, Section 3]. Then [FKS23, Theorem 3.4 and Corollary 3.6] provide us with a
quadratic character

εG/G
′

x0 : G′(F )x0/G
′(F )x0,0+ → {±1}

that we identify with its inflation to G′(F )x0 .

According to [FKS23, Definition 5.5.8], the character ε
G/G′
x0 can be defined as the product of three

characters; the character G′εsym,ram defined in [FKS23, Definition 5.5.1]; the character G′ε
sym,ram
s

defined in [FKS23, Definition 5.5.5]; the character G′ε0 defined in [FKS23, Definition 5.5.7]. We
will recall (equivalent) definitions of these characters below. For this, we prepare some notation.

Following [FKS23, Definition 5.3.1] and using [Yu01, Corollary 2.3] as in [FKS23, Remark 5.5.3],
for x ∈ B(M ′, F ) and (OL, t) ∈ (Φ(G,Z(L))/IF )× R, we define the f-vector space V(x,OL,t) by

V(x,OL,t) =
( ⊕
αL∈OL

Lie(G)αL(Eunr)x,t:t+

)Gal(Eunr/Funr)
,

where E is the tamely ramified splitting field of Z(L).

2.3 Extension of G′ε
sym,ram
s

To define G′ε
sym,ram
s , let S = Φ(G,Z(G′))sym,ram/IF . We fix a subset S+ such that S = S+t−S+

and write S− = −S+. We recall from [FKS23, Remark 5.5.10] that the f-vector spaces V +
s and

V −s are defined by

V +
s =

⊕
OG′∈S+

V(x0,OG′ ,s)
and V −s =

⊕
OG′∈S−

V(x0,OG′ ,s)
,

and the quadratic form ϕs on V +
s ⊕ V −s is given by ϕs(Y

+ + Y −) = X
(

[Ỹ +, Ỹ −]
)

for Y + ∈ V +
s

and Y − ∈ V −s , where Ỹ + and Ỹ − denote lifts of Y + and Y − in LieGsc(F ) respectively (using the
canonical identifications of the weight subspaces of LieG(F ) and Lie(Gsc)(F )), and [ , ] denotes
the Lie bracket in LieGsc(F ). Let O(V +

s ⊕ V −s , ϕs) denote the orthogonal group of (V +
s ⊕ V −s , ϕs),

which is defined over f. According to [FKS23, Remark 5.5.10], the adjoint action of G on Lie(G)
induces a group homomorphism

G′(F )x0 −→ O(V +
s ⊕ V −s , ϕs)(f) (2.3.1)

and the character G′ε
sym,ram
s agrees with the composition of (2.3.1) with the homomorphism

O(V +
s ⊕ V −s , ϕs)(f)

sn−→ f×/(f×)2 sgnf−→ {±1}, (2.3.2)

where sn denotes the spinor norm, as in Section 2.1.

We also define the quadratic space (V +
s,M ⊕ V

−
s,M , ϕs,M ) by replacing S± with

S±M = S± ∩
(
Φ(M,Z(G′))

sym,ram
/IF

)
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in the construction of the quadratic space (V +
s ⊕ V −s , ϕs). Since the embedding ι : B(M,F ) ↪→

B(G,F ) is s-generic relative to x0, the inclusion Lie(M) ⊂ Lie(G) induces an isomorphism of
quadratic spaces (

(V +
s,M ⊕ V

−
s,M )(f), ϕs,M

)
'
(
(V +
s ⊕ V −s )(f), ϕs

)
.

Moreover, the adjoint action of NG′(M
′)(F )[x0]M′

= NG′(M
′)(F )[x0]M on Lie(M) induces an action

on (V +
s,M ⊕ V

−
s,M )(f) that preserves ϕs,M , because the action of G′(F ) on X is trivial, and hence

yields a group homomorphism

NG′(M
′)(F )[x0]M′

−→ O(V +
s,M ⊕ V

−
s,M , ϕs,M )(f)

∼−→ O(V +
s ⊕ V −s , ϕs)(f).

We define the quadratic character G′ ε̃
sym,ram
s of NG′(M

′)(F )[x0]M′
as the composition of this homo-

morphism with (2.3.2).

Lemma 2.3.3. The character G′ ε̃
sym,ram
s is an extension of the character G′ε

sym,ram
s |NG′ (M ′)(F )x0

to
the group NG′(M

′)(F )[x0]M′
.

Proof. The lemma follows from the definition of G′ ε̃
sym,ram
s and the above description of G′ε

sym,ram
s .

2.4 A description of the character ε
G/G′
x0 /G′ε

sym,ram
s

Recall that ε
G/G′
x0 =G′ εsym,ram · G′εsym,ram

s · G′ε0. In this subsection, we will recall definitions of the
characters G′εsym,ram and G′ε0 from [FKS23] and deduce a description of the product G′εsym,ram ·G′ε0
in Lemma 2.4.2 that will allow us to extend (the restriction of) G′εsym,ram ·G′ε0 = ε

G/G′
x0 /G′ε

sym,ram
s ,

and hence ε
G/G′
x0 , in the subsequent subsections.

We introduce additional notation, closely following [FKS23]. For αM ′ ∈ Φ(G,Z(M ′)), let FαM′ and

F±αM′ denote the subfields of F such that

Gal(F/FαM′ ) =
{
σ ∈ Gal(F/F ) | σ(αM ′) = αM ′

}
and

Gal(F/F±αM′ ) =
{
σ ∈ Gal(F/F ) | σ(αM ′) ∈ {±αM ′}

}
.

We write eαM′ for the ramification degree of the extension FαM′/F , and fαM′ for the residue field
of FαM′ . Similarly, we define FαG′ , F±αG′ , eαG′ , and fαG′ for αG′ ∈ Φ(G,Z(G′)). We set

Φ′M ′ = {αM ′ ∈ Φ(G,Z(M ′)) | αM ′ |Z(G′) ∈ Φ(G,Z(G′))sym,ram}.

We also write

Φ′M ′,asym = Φ(G,Z(M ′))asym ∩ Φ′M ′ and Φ′M ′,sym = Φ′M ′ r Φ′M ′,asym.

Following [FKS23, Definition 5.5.1], forOG′ ∈ Φ(G,Z(G′))sym,ram/IF , we write eOG′ for the common

value eαG′ for every αG′ ∈ OG′ . For OM ′ ∈ Φ′M ′/IF , we set sOM′ = e−1
OG′

/2, where OG′ = OM ′ |Z(G′).

For x ∈ B(M ′, F ), we define the f-vector spaces Vx by

Vx =
⊕

OG′∈Φ(G,Z(G′))sym,ram/IF

⊕
t∈(−e−1

OG′
/2,e−1

OG′
/2)

V(x,OG′ ,t)
=

⊕
OM′∈Φ′

M′/IF

⊕
t∈(−sOM′ ,sOM′ )

V(x,OM′ ,t)
.
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Applying [FKS23, Definition/Lemma 5.4.8] to the finite subset

S =
{

(OG′ , t) ∈ Φ(G,Z(G′))sym,ram/IF × R
∣∣∣ t ∈ (−e−1

OG′
/2, e−1

OG′
/2), V(x,OG′ ,t)

6= {0}
}

of Φ(G,Z(G′))/IF × R, we obtain the non-degenerate, Gal(f/f)-invariant quadratic form ϕ on Vx.
Instead of recalling the precise definition of ϕ, we only remark the following property of ϕ, which
follows from [FKS23, Definition 5.4.5].

Property 2.4.1. Let OM ′ , O
′
M ′ ∈ Φ′M ′/IF , t ∈ (−sOM′ , sOM′ ), and t′ ∈ (−sO′

M′
, sO′

M′
). Then the

subspace V(x,OM′ ,t)
of Vx is orthogonal to V(x,O′

M′ ,t
′) with respect to the bilinear form on Vx attached

to the quadratic form ϕ unless (OM ′ , t) = (−O′M ′ ,−t′).

The adjoint action of G′ on Lie(G) induces an action of G′(F unr)x on Vx, and this action preserves
the form ϕ by [FKS23, Definition/Lemma 5.4.8]. We also define the G′(F unr)x-stable subspaces
Vx,0 and Vx, 6=0 of Vx by

Vx,0 =
⊕

OM′∈Φ′
M′/IF

V(x,OM′ ,0) and Vx, 6=0 =
⊕

OM′∈Φ′
M′/IF

⊕
t∈(−sOM′ ,sOM′ )

t6=0

V(x,OM′ ,t)
,

and note that Vx0,0 agrees with the space denoted by V0,k̄ in [FKS23, page 2293] for the subset
Φ(G,Z(G′))sym,ram ⊂ Φ(G,Z(G′)) that is used in [FKS23, Definition 5.5.7] to define G′ε0. By Prop-
erty 2.4.1, we have an orthogonal decomposition Vx = Vx,0⊕Vx, 6=0. In particular, the paring ϕ yields
non-degenerate quadratic forms on Vx,0 and Vx, 6=0. Since the pairing ϕ is Gal(f/f)-invariant, the
spaces (Vx(f), ϕ), (Vx,0(f), ϕ), and (Vx, 6=0(f), ϕ) are non-degenerate quadratic spaces over f, and the
actions of G′(F )x on these spaces induce rational orthogonal representations G′(F )x −→ O(W,ϕ)(f)
for W = Vx, Vx,0, and Vx, 6=0. According to [FKS23, Definition 5.5.7], [FKS23, Definition 5.5.1]
and [FKS23, Remark 5.5.10], the character G′ε0, resp., G′εsym,ram agrees with the composition

G′(F )x0 −→ O(W,ϕ)(f)
sn−→ f×/(f×)2

sgnf−−→ {±1}, where W = Vx0,0, resp., Vx0,6=0.

Lemma 2.4.2. The product G′εsym,ram · G′ε0 agrees with the composition

G′(F )x0 −→ O(Vx0 , ϕ)(f)
sn−→ f×/(f×)2 sgnf−−→ {±1}.

Proof. The lemma follows from the orthogonal decomposition Vx0 = Vx0,0 ⊕ Vx0,6=0 by [O’M00,
Section 55.4].

2.5 An action of NG′(M
′)(F )[x0]M′

on Vx0

In order to extend the character (G′εsym,ram·G′ε0)|NG′ (M ′)(F )x0
using Lemma 2.4.2 toNG′(M

′)(F )[x0]M′
,

we first construct an action of NG′(M
′)(F )[x0]M′

on Vx0 . We define the subset As-gen of B(M ′, F )
by

As-gen = {x ∈ x0 +X∗(AM ′)⊗Z R | ι : B(M,F ) −→ B(G,F ) is s-generic relative to x } .

We note that for any n ∈ NG′(M
′)(F )[x0]M′

, we have nx0 ∈ As-gen. More generally, let x, y ∈ As-gen.
In order to define the action of NG′(M

′)(F )[x0]M′
on Vx0 in Definition 2.5.8, we will construct an
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isomorphism Iy|x : Vx −→ Vy that is compatible with the action of NG′(M
′)(F )[x0]M′

in the sense of
Lemma 2.5.7. To construct this isomorphism, we begin by relating the jumps of the relevant root
group filtrations at x and y that are used to define Vx and Vy.

Let OM ′ ∈ Φ′M ′/IF and t ∈ (−sOM′ , sOM′ ). Recall that we have

V(x,OM′ ,t)
=
( ⊕
αM′∈OM′

Lie(G)αM′ (E
unr)x,t:t+

)Gal(Eunr/Funr)
.

In particular, we have V(x,OM′ ,t)
= {0} unless Lie(G)αM′ (F

unr
αM′

)x,t:t+ 6= {0} for some (hence all)
αM ′ ∈ OM ′ . The general theory of Galois descent for vector spaces implies that

Lie(G)αM′ (F
unr
αM′

)x,t:t+ = Lie(G)αM′ (FαM′ )x,t:t+ ⊗fαM′
f.

Hence, we obtain that V(x,OM′ ,t)
= {0} unless Lie(G)αM′ (FαM′ )x,t:t+ 6= {0}. For OM ′ ∈ Φ′M ′/IF , we

define

J(OM ′ ;x) =
{
t ∈ (−sOM′ , sOM′ ) | Lie(G)αM′ (FαM′ )x,t:t+ 6= {0} for all αM ′ ∈ OM ′

}
.

Then we have
Vx =

⊕
OM′∈Φ′

M′/IF

⊕
t∈J(OM′ ;x)

V(x,OM′ ,t)
.

Since y − x ∈ X∗(AM ′)⊗Z R ⊂ X∗(Z(M ′))⊗Z R, the pairing 〈y − x, αM ′〉 does not depend on the
choice of αM ′ ∈ OM ′ . We write it as 〈y − x,OM ′〉.

Lemma 2.5.1. Let OM ′ ∈ Φ′M ′/IF and t ∈ J(OM ′ ;x). Then we have

t+ 〈y − x,OM ′〉 6∈ sOM′Z r 2sOM′Z.

Proof. We write t′ = t+〈y−x,OM ′〉. Fix an element αM ′ ∈ OM ′ . The definition of the Moy–Prasad
filtration implies that

Lie(G)αM′ (FαM′ )x,t:t+ = Lie(G)αM′ (FαM′ )y+(x−y),t:t+

= Lie(G)αM′ (FαM′ )y,t+〈y−x,αM′ 〉:(t+〈y−x,αM′ 〉)+ = Lie(G)αM′ (FαM′ )y,t′:t′+.

Hence, the assumption t ∈ J(OM ′ ;x) implies that

Lie(G)αM′ (FαM′ )y,t′:t′+ 6= {0}. (2.5.1a)

Suppose that t′ ∈ sOM′Z r 2sOM′Z. Then there exists an odd integer r′ such that t′ = sOM′ · r
′.

Since αG′ := αM ′ |Z(G′) is ramified symmetric, according to [FKS23, Lemma 5.6.5], the number
eαG′ r is an odd integer. Hence, we have

s− t′ = s− sOM′ · r
′ = r/2− e−1

αG′
· r′/2 = (eαG′ r − r

′)/2eαG′ ∈ e
−1
αG′

Z.

Thus, there exists an element $s−t′ ∈ FαG′ ⊂ FαM′ such that ord($s−t′) = s − t′. Then, (2.5.1a)
implies that

Lie(G)αM′ (FαM′ )y,s/Lie(G)αM′ (FαM′ )y,s+

= $s−t′ · Lie(G)αM′ (FαM′ )y,t′/$s−t′ · Lie(G)αM′ (FαM′ )y,t′+ 6= {0}.
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As the embedding ι : B(M,F ) −→ B(G,F ) is s-generic relative to y, we have αM ′ ∈ Φ(M,Z(M ′)).
Since y−x ∈ X∗(AM ′)⊗ZR and since M is the centralizer of AM ′ , we have 〈y−x, αM ′〉 = 0. Thus,
we obtain t′ = t ∈ (−sOM′ , sOM′ ), a contradiction.

Let OM ′ ∈ Φ′M ′/IF and t ∈ J(OM ′ ;x). that there exists a unique r(y − x;OM ′ ; t) ∈ 2sOM′Z such
that

t+ 〈y − x,OM ′〉+ r(y − x;OM ′ ; t) ∈ (−sOM′ , sOM′ ).

Remark 2.5.2. Suppose that αM ′ ∈ Φ(G,Z(M ′)) is symmetric. Then, there exists an element
σαM′ ∈ Gal(F/F ) such that σαM′ (αM ′) = −αM ′ . In this case, we have

−〈y − x, αM ′〉 = 〈y − x,−αM ′〉 = 〈y − x, σαM′ (αM ′)〉 = 〈σ−1
αM′

(y − x), αM ′〉 = 〈y − x, αM ′〉.

Hence, we obtain that 〈y−x, αM ′〉 = 0. Thus, we have r(y−x; IαM ′ ; t) = 0 for all t ∈ (−sOM′ , sOM′ ).

Lemma 2.5.3. Let x, y ∈ As-gen and OM ′ ∈ Φ′M ′/IF . Then the map

t 7→ t+ 〈y − x,OM ′〉+ r(y − x;OM ′ ; t)

defines a bijection J(OM ′ ;x) −→ J(OM ′ ; y).

Proof. Let t ∈ J(OM ′ ;x). We write t′ = t+ 〈y−x,OM ′〉 and t′′ = t+ 〈y−x,OM ′〉+r(y−x;OM ′ ; t).
We will prove that t′′ ∈ J(OM ′ ; y). The definition of r(y−x;OM ′ ; t) implies that t′′ ∈ (−sOM′ , sOM′ ).
Thus, it suffices to show that Lie(G)αM′ (FαM′ )y,t′′:t′′+ 6= {0} for all αM ′ ∈ OM ′ . As in the proof of
Lemma 2.5.1, the definition of the Moy–Prasad filtration implies that

Lie(G)αM′ (FαM′ )x,t:t+ = Lie(G)αM′ (FαM′ )y,t′:t′+.

Hence, the assumption t ∈ J(OM ′ ;x) implies that Lie(G)αM′ (FαM′ )y,t′:t′+ 6= {0}. Since

r(y − x;OM ′ ; t) ∈ 2sOM′Z = e−1
αG′

Z,

there exists an element $r ∈ FαG′ ⊂ FαM′ such that ord($r) = r(y − x;OM ′ ; t). Then, we have

Lie(G)αM′ (FαM′ )y,t′′/Lie(G)αM′ (FαM′ )y,t′′+ = $r·Lie(G)αM′ (FαM′ )y,t′/$r·Lie(G)αM′ (FαM′ )y,t′+ 6= {0}.

Thus, t 7→ t+ 〈y − x,OM ′〉+ r(y − x;OM ′ ; t) defines a map J(OM ′ ;x) −→ J(OM ′ ; y). Replacing x
with y, we also obtain a map J(OM ′ ; y) −→ J(OM ′ ;x) by t′′ 7→ t′′+ 〈x−y,OM ′〉+r(x−y;OM ′ ; t

′′).
Since we have 〈x− y,OM ′〉 = −〈y − x,OM ′〉, these maps are inverses of each other.

The construction of the isomorphism Iy|x : Vx −→ Vy involves scaling by appropriate powers of
uniformizers $αM′ of FαM′ |Z(G′)

for αM ′ ∈ Φ′M ′ based on the bijection in Lemma 2.5.3. This

requires to be able to choose the uniformizers in a compatible way, which we prove next, see
Lemma 2.5.6. We first introduce some terminology.

Definition 2.5.4. Let αM ′ ∈ Φ′M ′ . We say that αM ′ isN -symmetric if there exists n ∈ NG′(M
′)(F )[x0]M′

and σ ∈ Gal(F/F ) such that σ(nαM ′) = −αM ′ . We also say that an element αM ′ ∈ Φ′M ′ is N -
asymmetric if it is not N -symmetric. We define the subsets Φ′M ′,N -sym and Φ′M ′,N -asym of Φ′M ′
by

Φ′M ′,N -sym =
{
αM ′ ∈ Φ′M ′ | αM ′ is N -symmetric

}
and Φ′M ′,N -asym = Φ′M ′ r Φ′M ′,N -sym.
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Lemma 2.5.5. Let αM ′ ∈ Φ′M ′,N -sym. We write αG′ = αM ′ |Z(G′). Then there exists a uniformizer

$αM′ of FαG′ such that σ($αM′ ) = −$αM′ for all σ ∈ Gal(F/F ) for which there exists n ∈
NG′(M

′)(F )[x0]M′
with σ(nαM ′) = −αM ′.

Proof. Since αM ′ ∈ Φ′M ′ , we have αG′ ∈ Φ(Z(G′), G)sym,ram. Hence, the field extension FαG′/F±αG′
is a ramified quadratic extension. Thus, we can take a uniformizer $αM′ of FαG′ such that

ι($αM′ ) = −$αM′ , (2.5.5a)

where ι denotes the unique non-trivial element of Gal(FαG′/F±αG′ ). We will prove that this $αM′

satisfies the condition of the lemma. Let n ∈ NG′(M
′)(F )[x0]M′

and σ ∈ Gal(F/F ) such that
σ(nαM ′) = −αM ′ . Since n ∈ G′(F ), we have

σ(αG′) = σ(nαG′) = σ(nαM ′)|Z(G′) = −αM ′ |Z(G′) = −αG′ .

Then the definitions of FαG′ and F±αG′ imply that σ ∈ Gal(F/F±αG′ ) r Gal(F/FαG′ ). Thus, we
obtain that σ|FαG′ = ι. Now, the lemma follows from (2.5.5a).

Lemma 2.5.6. We can choose an element $αM′ for every αM ′ ∈ Φ′M ′ such that

(1) $αM′ is a uniformizer of FαG′ for all αM ′ ∈ Φ′M ′, where αG′ = αM ′ |Z(G′).

(2) $nαM′ = $αM′ for all n ∈ NG′(M
′)(F )[x0]M′

and αM ′ ∈ Φ′M ′.

(3) σ($αM′ ) = $σ(αM′ )
for all σ ∈ Gal(F/F ) and αM ′ ∈ Φ′M ′.

(4) $−αM′ = −$αM′ for all αM ′ ∈ Φ′M ′.

Proof. We fix a set C of representatives of Φ′M ′/
(
NG′(M

′)(F )[x0]M′
×Gal(F/F )× {±1}

)
. For each

αM ′ ∈ C, we fix a uniformizer $αM′ of FαG′ , with $αM′ as in Lemma 2.5.5 if αM ′ ∈ Φ′M ′,N -sym.

Let αM ′ ∈ C. Suppose that n1, n2 ∈ NG′(M
′)(F )[x0]M′

and σ1, σ2 ∈ Gal(F/F ) satisfy σ1(n1αM ′) =
σ2(n2αM ′). Then, since n1, n2 ∈ G′(F ), we have

σ1(αG′) = σ1(n1αG′) = σ1(n1αM ′)|Z(G′) = σ2(n2αM ′)|Z(G′) = σ2(n2αG′) = σ2(αG′).

Hence, we obtain that σ−1
1 σ2 fixes αG′ . Since $αM′ ∈ FαG′ , we have σ−1

1 σ2($αM′ ) = $αM′ , that

is, σ1($αM′ ) = σ2($αM′ ). Thus, for βM ′ ∈
(
NG′(M

′)(F )[x0]M′
×Gal(F/F )

)
αM ′ , the uniformizer

σ($αM′ ) of FβG′ = Fσ(αG′ )
does not depend on the choice of (n, σ) ∈ NG′(M

′)(F )[x0]M′
×Gal(F/F )

such that σ(nαM ′) = βM ′ , and we set $βM′ = σ($αM′ ). If αM ′ ∈ Φ′M ′,N -asym, we define the uni-

formizer$−βM′ of F−βG′ = FβG′ by$−βM′ = −$βM′ for each βM ′ ∈
(
NG′(M

′)(F )[x0]M′
×Gal(F/F )

)
αM ′ .

Now, we have defined a uniformizer $αM′ of FαG′ for each αM ′ ∈ Φ′M ′ that together by con-
struction satisfy the first three conditions. Hence it remains to show that these uniformizers
satisfy Condition (4) and by the first three conditions it suffices to do so for αM ′ ∈ C. Let
αM ′ ∈ C. If αM ′ ∈ Φ′M ′,N -asym, the choice of the uniformizers above implies that $−αM′ = −$αM′ .

So we assume that αM ′ ∈ Φ′M ′,N -sym, and let n ∈ NG′(M
′)(F )[x0]M′

and σ ∈ Gal(F/F ) such
that σ(nαM ′) = −αM ′ . Since we chose the uniformizer $αM′ as in Lemma 2.5.5, we have
σ($αM′ ) = −$αM′ . Thus, we obtain that

$−αM′ = $σ(nαM′ )
= σ($αM′ ) = −$αM′ .
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We fix uniformizers $αM′ of FαG′ for αM ′ ∈ Φ′M ′ as in Lemma 2.5.6. We also fix a square root ζ of

−1 in F and also regard ζ as an element of f. We write F ′ = F (ζ) and f′ = f(ζ).

Let OM ′ ∈ Φ′M ′/IF and t ∈ J(OM ′ ;x). We set

z(y − x;OM ′ ; t) := r(y − x;OM ′ ; t) · eαG′ ,

where αG′ is any element of OM ′ |Z(G′). Since r(y − x;OM ′ ; t) ∈ 2sOM′Z = e−1
αG′

Z, we have z(y −
x;OM ′ ; t) ∈ Z. For αM ′ ∈ OM ′ , we define the isomorphism

Iy|x(αM ′ ; t) : Lie(G)αM′ (E
unr)x,t:t+ = Lie(G)αM′ (E

unr)y,t+〈y−x,αM′ 〉:(t+〈y−x,OM′ 〉)+

×(ζ$αM′ )
z(y−x;OM′ ;t)

−−−−−−−−−−−−−−→ Lie(G)αM′ (E
unr)y,t′′;t′′+,

where t′′ = t + 〈y − x,OM ′〉 + r(y − x;OM ′ ; t). Our choice of the uniformizers $αM′ implies that
the direct sum⊕

αM′∈OM′

Lie(G)αM′ (E
unr)x,t:t+

⊕
Iy|x(αM′ ;t)−−−−−−−−−→

⊕
αM′∈OM′

Lie(G)αM′ (E
unr)y,t′′:t′′+

of the isomorphisms above is defined over F unr. Thus, we obtain the isomorphism

V(x,OM′ ,t)
=
( ⊕
αM′∈OM′

Lie(G)αM′ (E
unr)x,t:t+

)Gal(Eunr/Funr)

−→
( ⊕
αM′∈OM′

Lie(G)αM′ (E
unr)y,t′′:t′′+

)Gal(Eunr/Funr)
= V(y,OM′ ,t

′′).

Then, using Lemma 2.5.3, we obtain the isomorphism

Iy|x : Vx =
⊕

OM′∈Φ′
M′/IF

⊕
t∈J(OM′ ;x)

V(x,OM′ ,t)
−→

⊕
OM′∈Φ′

M′/IF

⊕
t′′∈J(OM′ ;y)

V(y,OM′ ,t
′′) = Vy.

The construction of Iy|x implies that Iz|y ◦ Iy|x = Iz|x for x, y, z ∈ As-gen. In particular, we have
Ix|y ◦ Iy|x = idVx .

Lemma 2.5.7. Let x, y ∈ As-gen and n ∈ NG′(M
′)(F )[x0]M′

. Then the following diagram commutes:

Vx

Iy|x

��

n //

	

Vnx

Iny|nx

��
Vy

n // Vny,

where Vx
n−→ Vnx and Vy

n−→ Vny denote the maps induced from the adjoint action of G on Lie(G).

Proof. Let αM ′ ∈ Φ′M ′ and t ∈ J(IFαM ′ ;x). Since 〈y − x, αM ′〉 = 〈ny − nx, nαM ′〉, the definition
of r(y − x; IFαM ′ ; t) implies that r(y − x; IFαM ′ ; t) = r(ny − nx; IFnαM ′ ; t). Hence, our choice of
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uniformizers implies that the following diagram commutes:

Lie(G)αM′ (E
unr)x,t:t+

Iy|x(αM′ ;t)

��

n //

	

Lie(G)nαM′ (E
unr)nx,t:t+

Iny|nx(nαM′ ;t)

��
Lie(G)αM′ (E

unr)y,t′′:t′′+
n // Lie(G)n·αM′ (E

unr)ny,t′′:t′′+,

where

t′′ = t+ 〈y − x, αM ′〉+ r(y − x; IαM ′ ; t) = t+ 〈ny − nx, nαM ′〉+ r(ny − nx; InαM ′ ; t).

Now, the claim follows from the construction of Iy|x.

Definition 2.5.8. For n ∈ NG′(M
′)(F )[x0]M′

, we define on ∈ GL(Vx0)(f) as the composition

on : Vx0
n−→ Vnx0

Ix0|nx0−−−−→ Vx0 .

Corollary 2.5.9. The map n 7→ on defines a group homomorphism NG′(M
′)(F )[x0]M′

−→ GL(Vx0)(f).

Proof. Let m,n ∈ NG′(M
′)(F )[y]M′

. We will prove that onm = on ◦ om. We have

onm =

(
Vx0

nm−−→ Vnmx0
Ix0|nmx0−−−−−→ Vx0

)
=

(
Vx0

m−→ Vmx0
n−→ Vnmx0

Ix0|nmx0−−−−−→ Vx0

)
=

(
Vx0

m−→ Vmx0
Ix0|mx0−−−−−→ Vx0

Imx0|x0−−−−−→ Vmx0
n−→ Vnmx0

Ix0|nmx0−−−−−→ Vx0

)
=

(
Vx0

Imx0|x0−−−−−→ Vmx0
n−→ Vnmx0

Ix0|nmx0−−−−−→ Vx0

)
◦ om.

By applying Lemma 2.5.7 for x = x0 and y = mx0, we obtain(
Vx0

Imx0|x0−−−−−→ Vmx0
n−→ Vnmx0

Ix0|nmx0−−−−−→ Vx0

)
=

(
Vx0

n−→ Vnx0
Inmx0|nx0−−−−−−→ Vnmx0

Ix0|nmx0−−−−−→ Vx0

)
=

(
Vx0

n−→ Vnx0
Ix0|nx0−−−−→ Vx0

)
= on.

Thus, we conclude that onm = on ◦ om.

2.6 Extension of ε
G/G′
x0 /G′ε

sym,ram
s

By Lemma 2.4.2, the restriction of the character G′εsym,ram · G′ε0 to NG′(M
′)(F )x0 factors through

the morphism n 7→ on. We will first define a subgroup Õ(Vx0) of GL(Vx0)(f), see Definition
2.6.3, that contains on for all n ∈ NG′(M

′)(F )[x0]M′
, see Proposition 2.6.4, and use this to ex-

tend (G′εsym,ram · G′ε0)|NG′ (M ′)(F )x0
, and hence ε

G/G′
x0 , to NG′(M

′)(F )[x0]M′
. To do so, let [αM ′ ] ∈(

Φ′M ′/IF
)
/Gal(f/f) = Φ′M ′/Gal(F/F ). Since x0 ∈ B(G,F ), the set J(OM ′ ;x0) does not depend

on the choice of IF -orbit OM ′ ∈ [αM ′ ] ⊂ Φ′M ′/IF . We write J([αM ′ ];x0) for J(OM ′ ;x0). We define

R̃x0 =
{

([αM ′ ], t) | [αM ′ ] ∈ Φ′M ′/Gal(F/F ), t ∈ J([αM ′ ];x0)
}
,
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R̃x0,asym =
{

([αM ′ ], t) | [αM ′ ] ∈ Φ′M ′,asym/Gal(F/F ), t ∈ J([αM ′ ];x0)
}
,

and
R̃x0,sym =

{
([αM ′ ], t) | [αM ′ ] ∈ Φ′M ′,sym/Gal(F/F ), t ∈ J([αM ′ ];x0)

}
.

For ([αM ′ ], t) ∈ R̃x0 , we set V(x0,[αM′ ],t)
=
⊕

OM′∈[αM′ ]
V(x0,OM′ ,t)

, where the sum is taken over

the IF -orbits in [αM ′ ]. According to [DS18, Corollary 3.11], we can define the action of {±1}
on R̃x0 by −1 · ([αM ′ ], t) = (−[αM ′ ],−t), and this action preserves R̃x0,asym and R̃x0,sym. For

[([αM ′ ], t)] ∈ R̃x0/{±1}, we define

V(x0,[([αM′ ],t)])
=

⊕
([α′

M′ ],t
′)∈[([αM′ ],t)]

V(x0,[α′M′ ],t
′) (2.6.1)

=

{
V(x0,[αM′ ],t)

⊕ V(x0,−[αM′ ],−t) (([αM ′ ], t) 6= (−[αM ′ ],−t)) ,
V(x0,[αM′ ],t)

(([αM ′ ], t) = (−[αM ′ ],−t)) .

For later use, we note that if ([αM ′ ], t) ∈ R̃x0,asym, then ([αM ′ ], t) 6= (−[αM ′ ],−t) and dimf

(
V(x0,[([αM′ ],t)])

(f)
)

is even. The spaces V(x0,[([αM′ ],t)])
are defined over f, and noting Property 2.4.1, we have the or-

thogonal decomposition

Vx0 =
⊕

[([αM′ ],t)]∈R̃x0/{±1}

V(x0,[([αM′ ],t)])
(2.6.2)

=

( ⊕
[([αM′ ],t)]∈R̃x0,asym/{±1}

V(x0,[([αM′ ],t)])

)
⊕

( ⊕
[([αM′ ],t)]∈R̃x0,sym/{±1}

V(x0,[([αM′ ],t)])

)
.

For [([αM ′ ], t)] ∈ R̃x0/{±1}, let ζ[([αM′ ],t)]
: V(x0,[([αM′ ],t)])

−→ V(x0,[([αM′ ],t)])
denote the multiplication

by ζ ∈ f′. We also write ζ[([αM′ ],t)]
for the element of GL(Vx0)(f′) that acts on V(x0,[([αM′ ],t)])

by
ζ[([αM′ ],t)]

and acts on the other direct summands of the decomposition (2.6.2) by the identity map.

Definition 2.6.3. We define the group GL+(Vx0) to be the subgroup of GL(Vx0)(f) that con-
sists of all g ∈ GL(Vx0)(f) that satisfy the following property: For every element [([αM ′ ], t)] of
R̃x0,asym/{±1}, resp., R̃x0,sym/{±1}, there exists an element [([α′M ′ ], t

′)] of R̃x0,asym/{±1}, resp.,

R̃x0,sym/{±1} such that
gV(x0,[([αM′ ],t)])

= V(x0,[([α′M′ ],t
′)]).

We define Õ(Vx0) to be the subgroup of GL(Vx0)(f′) generated by GL+(Vx0) ∩ O(Vx0 , ϕ)(f) and
ζ[([αM′ ],t)]

for [([αM ′ ], t)] ∈ R̃x0,asym/{±1}, i.e.,

Õ(Vx0) =
〈

GL+(Vx0) ∩O(Vx0 , ϕ)(f), ζ[([αM′ ],t)]
| [([αM ′ ], t)] ∈ R̃x0,asym/{±1}

〉
⊂ GL(Vx0)(f′).

Proposition 2.6.4. For any n ∈ NG′(M
′)(F )[x0]M′

, the element on is contained in the group

Õ(Vx0).

Proof. Let n ∈ NG′(M
′)(F )[x0]M′

, OM ′ ∈ Φ′M ′/IF , and t ∈ J(OM ′ ;x0). The definition of the integer

z(x0−nx0;OM ′ ; t) implies that it actually only depends on the Gal(f/f)-orbit of OM ′ , and we have

z(x0 − nx0;OM ′ ; t) = −z(x0 − nx0;−OM ′ ;−t). (2.6.4a)

18



Hence we can define the subset R̃x0(n)/{±1} of R̃x0/{±1} by

R̃x0(n)/{±1} =
{

[([αM ′ ], t)] ∈ R̃x0/{±1}
∣∣∣ z(x0 − nx0;OM ′ ; t) ≡ 1 mod 2 for OM ′ ⊂ [αM ′ ]

}
.

By Remark 2.5.2 we have z(x0 − nx0;OM ′ ; t) = 0 for all OM ′ ∈ Φ′M ′,sym/IF . Hence, we have

R̃x0(n)/{±1} ⊂ R̃x0,asym/{±1}. It follows from the definition of on and our choice of uniformizers

that the element
(∏

[([αM′ ],t)]∈R̃x0 (n)/{±1} ζ[([αM′ ],t)]

)
◦on is defined over f and contained in the group

GL+(Vx0). Moreover, this element preserves the quadratic form ϕ on Vx by Equation (2.6.4a) and

Property 2.4.1. Hence, we have
(∏

[([αM′ ],t)]∈R̃x0 (n)/{±1} ζ[([αM′ ],t)]

)
◦ on ∈ GL+(Vx0) ∩O(Vx0 , ϕ)(f),

and therefore on ∈ Õ(Vx0).

To extend our quadratic characters, we fix a square root
√

sgnf(−1) of sgnf(−1) in C× and recall

that by Equation (2.6.1) dimf

(
V(x0,[([αM′ ],t)])

(f)
)

is even when [([αM ′ ], t)] ∈ R̃x0,asym.

Proposition 2.6.5. The character (sgnf ◦ sn)|GL+(Vx0 )∩O(Vx0 ,ϕ)(f) extends to a unique character s̃n

of Õ(Vx0) that satisfies

s̃n
(
ζ[([αM′ ],t)]

)
=
√

sgnf(−1)
dimf

(
V(x0,[([αM′ ],t)])

(f)
)
/2

for all [([αM ′ ], t)] ∈ R̃x0,asym/{±1}.

Proof. By the definition of Õ(Vx0), if such an extension s̃n exists, it is unique. In order to prove
existence, we define the character snζ of the abelian group

Aζ :=
〈
ζ[([αM′ ],t)]

∣∣∣ [([αM ′ ], t)] ∈ R̃x0,asym/{±1}
〉

to be the unique character that satisfies

snζ
(
ζ[([αM′ ],t)]

)
=
√

sgnf(−1)
dimf

(
V(x0,[([αM′ ],t)])

(f)
)
/2

for all [([αM ′ ], t)] ∈ R̃x0,asym/{±1}. Since ζ2 = −1, Property 2.4.1, Equation (2.6.1), and [Sch85,
Chapter 9, Example 3.5] imply that

sgnf

(
sn(ζ2

[([αM′ ],t)]
)
)

= sgnf

(
(−1)

dimf

(
V(x0,[([αM′ ],t)])

(f)
)
/2
)

=
(
sgnf(−1)

)dimf

(
V(x0,[([αM′ ],t)])

(f)
)
/2

= snζ

(
ζ2

[([αM′ ],t)]

)
.

Hence, we obtain that the restrictions of sgnf ◦ sn and snζ to the group

GL+(Vx0) ∩O(Vx0 , ϕ)(f) ∩Aζ =
〈
ζ2

[([αM′ ],t)]

∣∣∣ [([αM ′ ], t)] ∈ R̃x0,asym/{±1}
〉

agree.

Let g ∈ GL+(Vx0) and [([αM ′ ], t)] ∈ R̃x0,asym/{±1}. If we write g[([αM ′ ], t)] for the element of

R̃x0,asym/{±1} such that gV(x0,[([αM′ ],t)])
= V(x0,g[([αM′ ],t)])

, then the definition of ζ[([αM′ ],t)]
implies

that g ◦ζ[([αM′ ],t)]
= ζg[([αM′ ],t)] ◦g. Hence, we see that the group GL+(Vx0) normalizes the group Aζ

and the character snζ . Thus, we can define the character s̃n of Õ(Vx0) by s̃n(g · h) = sgnf (sn(g)) ·
snζ(h) for g ∈ GL+(Vx0) ∩O(Vx0 , ϕ)(f) and h ∈ Aζ .
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Remark 2.6.6. If sgnf(−1) = 1, then the character s̃n is a quadratic character. However, if
sgnf(−1) = −1, the character s̃n takes values in µ4 and is not always a quadratic character.

Definition 2.6.7. We define the character G′ ε̃sym,ram,0 of NG′(M
′)(F )[x0]M′

as the composition

NG′(M
′)(F )[x0]M′

n7→on−−−−→ Õ(Vx0)
s̃n−→ µ4,

and the character ε̃
G/G′
x0 : NG′(M

′)(F )[x0]M′
−→ µ4 by ε̃

G/G′
x0 = G′ ε̃

sym,ram
s · G′ ε̃sym,ram,0.

Corollary 2.6.8. The characters G′ ε̃sym,ram,0 and ε̃
G/G′
x0 are extensions of the characters

(G′εsym,ram · G′ε0) |NG′ (M ′)(F )x0
and εG/G

′
x0 |NG′ (M ′)(F )x0

to the group NG′(M
′)(F )[x0]M′

.

Proof. This follows from Lemma 2.4.2, Proposition 2.6.5, Lemma 2.3.3 and the definition ε
G/G′
x0 =

G′εsym,ram · G′εsym,ram
s · G′ε0.

2.7 Extension of the quadratic character for general reductive groups

Now we drop the condition that G is adjoint, and we assume (as before) that there exists a Gad-
good element X ∈ Lie∗(G′sc,ab)(F )−r of depth −r in the sense of [FKS23, Section 3]. This is, for
example, implied by the existence of a G-generic character of G′(F ) of depth r relative to x0 by
[FKS23, Remark 4.1.3]. Then we obtain from [FKS23, Lemma 4.1.2] the quadratic character

εG/G
′

x0 : G′(F )[x0]G → {±1},

which is defined as the precomposition of ε
Gad/G

′
ad

x0 with the map G′(F )[x0]G → G′ad(F )[x0]G that
is the restriction of the map G(F ) → Gad(F ) arising from the adjoint quotient G � Gad. Here
[x0]G ∈ Bred(G,F ) = B(Gad, F ).

We note that the diagram {ι} from page 8 induces a commutative diagram

B(G′ad, F ) �
� //

	

B(Gad, F )

B(M ′ad, F )
?�

OO

� � // B(Mad, F )
?�

OO

of admissible embeddings, the point [x0]G lies in the image of B(M ′ad, F ), and the embedding
B(Mad, F ) −→ B(Gad, F ) is r

2 -generic relative to [x0]G. Hence we obtain from Definition 2.6.7 the

character ε̃
Gad/G

′
ad

[x0]G
: NG′ad

(M ′ad)(F )[x0]M′
−→ µ4.

Definition 2.7.1. We define ε̃
G/G′
x0 to be the composition

ε̃G/G
′

x0 : NG′(M
′)(F )[x0]M′

−→ NG′ad
(M ′ad)(F )[x0]M′

−→ µ4,

where the first map is the restriction of G(F )→ Gad(F ) and the second is ε̃
Gad/G

′
ad

[x0]G
.

Theorem 2.7.2. The restrictions of the characters ε
G/G′
x0 and ε̃

G/G′
x0 to NG′(M

′)(F )[x0]G agree.

Proof. This follows from the definitions of ε
G/G′
x0 and ε̃

G/G′
x0 and Corollary 2.6.8.
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3 The non-twisted and twisted Heisenberg–Weil constructions

In this section, we will construct a compact, open subgroup Kx of G(F ) and an irreducible smooth
representation κx of Kx from a Heisenberg–Weil datum that will be introduced in Definition 3.6.1.
Here x denotes a point of the Bruhat–Tits building of (a twisted Levi subgroup of) G. These
representations will play the roles of κM in Axiom 4.1.2 of [AFMO] and κx in Axioms 4.2.1 and
4.3.1 of [AFMO] in the setting of this paper. To construct κx, we will follow the construction
of [Yu01, Section 4] that uses the theory of Heisenberg–Weil representations, but incorporating a
quadratic twist introduced by [FKS23, Section 4] and allowing more general coefficient fields using
[Fin22, Section 2.3]. Key new results in this section include:

(1) We will prove a comparison result between κx and κy for x and y sufficiently close to each
other, see Proposition 3.6.13. The quadratic twist is essential for this comparison. The result
will be used to verify [AFMO, Axiom 4.3.1(5)] in the setting of this paper, see Lemma 4.3.7.

(2) We will prove an extension result for the (non-twisted) Heisenberg–Weil representations, see
Proposition 3.7.4. This result combined with the extension result for the quadratic character of
[FKS23], Theorem 2.7.2, yields an extension of κM , which will be used to verify Axiom 4.1.2(2)
of [AFMO], in the setting of this paper, see Proposition 4.3.4.

We note that the parts concerning the construction of the representation κx in Sections 3.1, 3.2,
and the first part of Section 3.6 essentially replicate the procedure in [Yu01] in our more general
setting. We have included these details for the convenience of the reader and to establish the
relevant notation.

3.1 Compact open subgroups from functions on the root system

Let x ∈ B(G,F ). Let T be a maximal torus of G such that the Galois splitting field E of T is
tamely ramified over F and such that x ∈ A(G,T,E). According to the discussion in the beginning
of [Yu01, Section 2], such a torus exists.

Given any function
f : Φ(G,T ) ∪ {0} −→ R̃,

with f(0) ≥ 0, following Bruhat and Tits ([BT72, 6.4.42]) we define the compact, open subgroup
G(E)x,f of G(E) by

G(E)x,f =
〈
Uα(E)x,f(α) | α ∈ Φ(G,T ) ∪ {0}

〉
,

where we use the convention that U0 = T and T (E)x,∞ = {1}. If f is concave in the sense of
[BT72, 6.4.3], then according to [BT72, 6.4.9(ii),(iii)], we have

G(E)x,f ∩ Uα(E) = Uα(E)x,f(α)

for all α ∈ Φ(G,T )∪{0}. If x is fixed and f is preserved by the actions of Gal(E/F ) on A(G,T,E)
and on Φ(G,T ), then we will define the compact, open subgroup G(F )x,f of G(F ) by

G(F )x,f = G(F ) ∩G(E)x,f .
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3.2 The non-twisted construction

In this subsection we recall Yu’s construction of φ′i−1 [Yu01, Section 4] but allowing more general
coefficient fields using [Fin22, Section 2.3]. The representation φ′i−1 is attached to a twisted Levi
subgroup G′ ⊆ G and a generic character thereof as we explain below. In Section 3.5 we will twist
this construction by a quadratic character, and in Section 3.6 we will attach a representation to
a whole sequence of twisted Levi subgroups G0 ⊆ G1 ⊆ . . . ⊆ Gn and generic characters of those
groups by inductively repeating the below construction.

Let G′ be a (not necessarily proper) twisted Levi subgroup of G that splits over a tamely ramified
field extension of F . We fix an admissible embedding B(G′, F ) ↪→ B(G,F ) and identify a point of
B(G′, F ) with its image in B(G,F ). We fix a positive real number r > 0. Let x ∈ B(G′, F ). Let T
be a maximal torus of G′ such that the splitting field E of T is tamely ramified over F and such
that x ∈ A(G′, T, E).

Following Yu ([Yu01, Section 9]), but recording the point x as index in the notation, we define the
compact, open subgroups Jx and Jx,+ of G(F ) by

Jx = G(F )x,f and Jx,+ = G(F )x,f+

where f and f+ are the (concave) functions on Φ(G,T ) ∪ {0} given by

f(α) =

{
r α ∈ Φ(G′, T ) ∪ {0},
r
2 otherwise,

and f+(α) =

{
r α ∈ Φ(G′, T ) ∪ {0},
r
2+ otherwise.

As explained in [Yu01, Section 1, Section 2], the groups Jx and Jx,+ are independent of the choice
of a maximal torus T of G′.

We also recall the following notation from [Yu01, Section 2]

(G′, G)(F )x,(r+, r
2

+) = G(F )x,f++ , where f++(α) =

{
r+ α ∈ Φ(G′, T ) ∪ {0},
r
2+ otherwise.

According to [BT72, 6.4.44], we have [Jx, Jx] ⊂ Jx,+. Hence, Jx,+ is a normal subgroup of Jx,
and the quotient group Jx/Jx,+ is an abelian group. Moreover, the definition of the Moy–Prasad
filtration subgroups implies that for all j ∈ Jx, we have jp ∈ Jx,+. Thus, Jx/Jx,+ is an abelian
group of exponent p. We regard Jx/Jx,+ as an Fp-vector space.

Let K ′x be an open subgroup of G′(F )[x]G . We write K ′x,0+ = K ′x ∩G′(F )x,0+. According to [Yu01,
Remark 3.5], the group K ′x normalizes the groups Jx and Jx,+. Hence, we can define the open
subgroup Kx of G(F ) as Kx = K ′x · Jx.

Let φ be a character of G′(F ) that is G-generic of depth r relative to x in the sense of [Fin,
Definition 3.5.2]. We will construct an irreducible smooth representation φ′x of Kx following [Yu01,
Section 4, Section 11] and [Fin22, Section 2.3].

Remark 3.2.1. In [Yu01], the representation φ′x was constructed in the case of C = C. All the
arguments there can be applied to the general cases except for the existence of the Heisenberg–
Weil representation. We will replace the complex Heisenberg–Weil representation with the mod-`
Heisenberg–Weil representation constructed in [Fin22, Section 2.3] if the coefficient field C has
positive characteristic (see Notation 3.2.2 below).
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Let φ̂x denote the character of
(
G′(F )[x]G

)
· Jx,+ defined as in [Yu01, Section 4]. This means φ̂x

is the character of
(
G′(F )[x]G

)
· Jx,+ that is trivial on (G′, G)(F )x,(r+, r

2
+) and agrees with φ on

G′(F )[x]G . We write Nx for the kernel of φ̂x|Jx,+ .

Since [Jx, Jx] ⊂ Jx,+, we can define the pairing Jx × Jx −→ C× by (j1, j2) 7→ φ̂x(j1j2j
−1
1 j−1

2 ).
Moreover, according to [Yu01, Lemma 11.1], the pairing above induces a non-degenerate symplectic
pairing

〈 , 〉x : Jx/Jx,+ × Jx/Jx,+ −→ µp,

where µp = {ζ ∈ C | ζp = 1}. We fix an isomorphism ιp : µp
∼−→ Fp and regard 〈 , 〉x as an

Fp-valued pairing. Thus, we can regard Jx/Jx,+ as a symplectic space over Fp. Let (Jx/Jx,+)#

denote the Heisenberg group of Jx/Jx,+, that is, (Jx/Jx,+)# is the set (Jx/Jx,+) × Fp equipped
with the group law

(v, a) · (w, b) =

(
v + w, a+ b+

〈v, w〉x
2

)
.

The symplectic group Sp(Jx/Jx,+) acts on (Jx/Jx,+)# as g(v, a) = (gv, a) for g ∈ Sp(Jx/Jx,+) and
(v, a) ∈ (Jx/Jx,+)#.

Notation 3.2.2. We define the irreducible C-representation ωx of the group Sp (Jx/Jx,+)n(Jx/Jx,+)#

such that the center {(0, a) | a ∈ Fp} of (Jx/Jx,+)# acts by the character (0, a) 7→ ι−1
p (a) as follows.

1. Suppose that the coefficient field C has characteristic zero. Then let ωx denote the complex
Heisenberg–Weil representation obtained from [Gér77, Section 2]. We note that although
the representation ωx is a priori defined over C, it is already defined over Q since the group
Sp (Jx/Jx,+) n (Jx/Jx,+)# is finite, and hence yields a representation with C-coefficients.

2. Suppose that the coefficient field C has characteristic ` > 0. Then let ωx denote the mod-`
Heisenberg–Weil representation obtained from [Fin22, Section 2.3].

We let jx : Jx/Nx −→ (Jx/Jx,+)# be the isomorphism from [Yu01, Proposition 11.4], which satisfies
the following properties.

� For j ∈ Jx,+, we have jx(j +Nx) = (0, ιp ◦ φ̂x(j)).

� For j ∈ Jx, the first factor of jx(j+Nx) ∈ (Jx/Jx,+)# = (Jx/Jx,+)×Fp is equal to j+Jx,+ ∈
Jx/Jx,+.

We use the same notation jx for its precomposition with the surjection Jx � Jx/Nx. Moreover,
[Yu01, Proposition 11.4] also implies that the conjugation action of K ′x on Jx induces a homomor-
phism

fx : K ′x −→ Sp(Jx/Jx,+),

and the maps jx and fx induce a group homomorphism

fx n jx : K ′x n Jx −→ Sp (Jx/Jx,+) n (Jx/Jx,+)#.

Thus, following Yu, we can define the irreducible representation φ̃x of K ′x n Jx as the pull back of
ωx via fx n jx. The construction of φ̃x implies that the restriction of φ̃x to 1 n Jx,+ is 1 n φ̂x|Jx,+-
isotypic. On the other hand, according to [BT72, 6.4.44], we have [G′(F )x,0+, Jx] ⊂ Jx,+. Hence,
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the image of K ′x,0+ via fx is trivial, and the restriction of φ̃x to K ′x,0+ n 1 is 1-isotypic. We define
the character inf(φx) of K ′x n Jx as the inflation of the character φx := φ|K′x via the map

K ′x n Jx � (K ′x n Jx)/Jx
∼−→ K ′x.

Since the restriction of φ̃x to 1 n Jx,+ is 1 n φ̂x|Jx,+-isotypic, the restriction of φ̃x to K ′x,0+ n 1 is
1-isotypic, and since we have

K ′x ∩ Jx = K ′x ∩G′(F )x,r = K ′x,0+ ∩ Jx,+,

the set
{k n k−1 | k ∈ K ′x ∩ Jx} ⊂ K ′x n Jx

is contained in the kernel of the representation inf(φx)⊗ φ̃x of K ′x n Jx . Thus, the representation
inf(φx) ⊗ φ̃x factors through the surjection K ′x n Jx � K ′x · Jx = Kx. We define the irreducible
representation φ′x of Kx to be the representation whose inflation to K ′x n Jx is inf(φx)⊗ φ̃x.

Remark 3.2.3. In the case G′ = G, we have Kx = K ′x ·G(F )x,r and φ′x = φ|Kx .

We record some properties of φ′x.

Lemma 3.2.4. The restriction of φ′x to Jx is irreducible, and the restriction of φ′x to the group
K ′x,0+ · Jx,+ is φ̂x|K′x,0+·Jx,+-isotypic. In particular, the restriction of φ′x to G(F )x,r+ is trivial.

Proof. The first claim follows from the fact that the restriction of φ′x to Jx is the pull back of the
Heisenberg representation of (Jx/Jx,+)# via the surjection jx (see also [Fin22, Lemma 2.5] for the
positive characteristic case). The construction of φ′x implies that the restriction of φ′x to Jx,+ is

φ̂x|Jx,+-isotypic, and the restriction of φ′x to K ′x,0+ is φ|K′x,0+ = φ̂x|K′x,0+-isotypic. Thus, we obtain

the second claim. The last claim follows from the second claim and the fact that the character φ̂x
is trivial on the group G(F )x,r+ ⊂ (G′, G)(F )x,(r+, r

2
+).

Lemma 3.2.5. Suppose that C admits a nontrivial involution, with respect to which the character
φx of K ′x is unitary. Then the representation φ′x is unitary.

Proof. Since the representation φ̃x factors through the map fx n jx, and the group Sp (Jx/Jx,+) n
(Jx/Jx,+)# is finite, the representation φ̃x is unitary. Then the lemma follows from the definition
of φ′x and the fact that the character φx is unitary.

3.3 A relative construction

In this subsection, we will construct an irreducible smooth representation (φ′)yx of an open subgroup
Ky
x of G(F ) from two points x, y ∈ B(G′, F ). We will use them to compare the representations φ′x

and φ′y for x and y sufficiently close in Section 3.4, see Corollary 3.4.9. For this, we first prove that
the genericity condition of a character φ of G′(F ) does not depend on the choice of points.

Lemma 3.3.1. Let r > 0 and φ be a character of G′(F ) that is G-generic of depth r relative to
a point x ∈ B(G′, F ). Then the character φ is G-generic of depth r relative to y for any point
y ∈ B(G′, F ).

24



Proof. We fix a maximal split torus S of G′ such that x, y ∈ A(G′, S, F ). Since the character φ is
G-generic of depth r relative to the point x, the restriction of φ to the group G′(F )x,r+ is trivial,
and there exists an element X∗ ∈ Lie∗(G′)G

′
(F ) which is G-generic of depth −r in the sense of

[Fin, Definition 3.5.2] such that the restriction of φ to

G′(F )x,r/G
′(F )x,r+ ' Lie(G′)(F )x,r/Lie(G′)(F )x,r+

is given by Ψ ◦ X∗. To prove the lemma, it suffices to show that the character φ is trivial on
G′(F )y,r+ and the restriction of φ to

G′(F )y,r/G
′(F )y,r+ ' Lie(G′)(F )y,r/Lie(G′)(F )y,r+

is also given by Ψ ◦X∗. We fix U ∈ U(ZG′(S)). According to [KY17, 4.3 Proposition (a)], we have

G′(F )y,r+ =
(
G′(F )y,r+ ∩ U(F )

)
· (G′(F )y,r+ ∩ ZG′(S)(F )) ·

(
G′(F )y,r+ ∩ U(F )

)
.

Since φ is a character of G′(F ), it is trivial on the groups U(F ) and U(F ). Moreover, since
x, y ∈ A(G′, S, F ), from [Adl98, Proposition 1.9.1], we have

G′(F )y,r+ ∩ ZG′(S)(F ) = ZG′(S)(F )y,r+ = ZG′(S)(F )x,r+ ⊂ G′(F )x,r+.

Hence, the character φ is also trivial on the group G′(F )y,r+ ∩ ZG′(S)(F ). Thus, we have proved
that the character φ is trivial on the group G′(F )y,r+. Next, we will prove that the restriction of φ
to the group G′(F )y,r/G

′(F )y,r+ is given by Ψ ◦X∗. By using [KY17, 4.3 Proposition (a)] again,
we obtain that

G′(F )y,r =
(
G′(F )y,r ∩ U(F )

)
· (G′(F )y,r ∩ ZG′(S)(F )) ·

(
G′(F )y,r ∩ U(F )

)
.

Since X∗ is fixed by the coadjoint action of G′ (hence of S) on Lie∗(G′), we obtain that X∗ is trivial
on the Lie algebras of U and U . Since the character φ is trivial on the groups U(F ) and U(F ),
it suffices to prove that the restriction of φ to the group ZG′(S)(F )y,r/ZG′(S)(F )y,r+ is given by
Ψ ◦X∗. Now, the claim follows from the facts that

ZG′(S)(F )y,r/ZG′(S)(F )y,r+ = ZG′(S)(F )x,r/ZG′(S)(F )x,r+

and the restriction of φ to the group G′(F )x,r/G
′(F )x,r+ is given by Ψ ◦X∗.

Let x, y ∈ B(G′, F ). We use the notation from the previous section, i.e., we fix a positive real
number r > 0, and φ is a character of G′(F ) that is G-generic of depth r relative to x, and hence
also relative to y.

Lemma 3.3.2. We have
φ̂x|Jx,+∩Jy,+ = φ̂y|Jx,+∩Jy,+ .

Proof. Let z ∈ {x, y}. Then φ̂z|Jz,+ is given by composing the map

Jz,+ � Jz,+/G(F )z,r+ ' (Lie(G′)(F )z,r ⊕ r(F )z, r
2

+)/(Lie(G)(F )z,r+)

� Lie(G′)(F )z,r/Lie(G′)(F )z,r+ ' G′(F )z,r/G
′(F )z,r+

with the restriction φ|G′(F )z,r (that factors through G′(F )z,r/G
′(F )z,r+), where the subspace r(F ) ⊂

Lie(G)(F ) is defined by r(F ) = Lie(G)(F )∩
⊕

α∈Φ(G,T )rΦ(G′,T ) Lie(G)(E)α for some maximal torus

T of G′ that splits over a tamely ramified extension E and for which x, y ∈ A(G′, T, E). Now the
claim follows from the equation φ̂x|G′(F )x,r∩G′(F )y,r = φ̂y|G′(F )x,r∩G′(F )y,r = φ|G′(F )x,r∩G′(F )y,r .
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As before, let K ′x, resp. K ′y, be an open subgroup of G′(F )[x]G , resp. G′(F )[y]G . We recall our
notation Kx = K ′x · Jx and Ky = K ′y · Jy. We also write

K ′x,y = K ′x ∩K ′y,
Jyx = (Jx ∩ Jy) · Jy,+,
Ky
x = K ′x,y · J

y
x .

We will construct an irreducible representation (φ′)yx of Ky
x below. We define Fp-subspaces V y

x and
V y
x,+ of Jy/Jy,+ as V y

x = Jyx/Jy,+ = (Jx ∩ Jy) · Jy,+/Jy,+ and V y
x,+ = (Jx,+ ∩ Jy) · Jy,+/Jy,+. (Note

that our group V y
x,+ is denoted Uyx in [FKS23].) The following lemma is a generalization of a result

of Yu to our more general setting.

Lemma 3.3.3 ([Yu01]). The Fp-subspace V y
x,+ is totally isotropic, and the space V y

x is the orthog-
onal complement of V y

x,+ in Jy/Jy,+ with respect to 〈 , 〉y.

Proof. The proof is analogous to Yu’s considerations in [Yu01, Section 12 and 13] where he treats
the case that y is in the G′(F )-orbit of x. For the convenience of the interested reader we have
spelt out more details in Appendix A.1.

Since V y
x is the orthogonal complement of the totally isotropic subspace V y

x,+ in Jy/Jy,+, the
symplectic pairing 〈 , 〉y induces a non-degenerate symplectic pairing on V y

x /V
y
x,+. We use the

same notation 〈 , 〉y for this pairing on V y
x /V

y
x,+. Hence, we can define the Heisenberg–Weil

representation ωyx of Sp
(
V y
x /V

y
x,+

)
n
(
V y
x /V

y
x,+

)#
associated with the central character (0, a) 7→

ι−1
p (a) for (0, a) ∈ {0} × Fp ⊂

(
V y
x /V

y
x,+

)#
as in Notation 3.2.2. We define the subgroup (V y

x )# of

(Jy/Jy,+)# by

(V y
x )# =

{
(v, a) ∈ (Jy/Jy,+)# | v ∈ V y

x

}
.

Then we can define the surjective homomorphism

(V y
x )# �

(
V y
x /V

y
x,+

)#
(3.3.4)

by (v, a) 7→ (v + V y
x,+, a). We define the subgroup P yx of Sp(Jy/Jy,+) as

P yx = {g ∈ Sp(Jy/Jy,+) | gV y
x,+ ⊂ V

y
x,+}.

Since every element g ∈ P yx preserves V y
x,+ and hence also its orthogonal complement V y

x , restriction
of g to V y

x ⊂ Jy/Jy,+ yields the surjection

P yx � Sp
(
V y
x /V

y
x,+

)
. (3.3.5)

Combining (3.3.4) with (3.3.5), we obtain a surjective homomorphism

P yx n (V y
x )# � Sp

(
V y
x /V

y
x,+

)
n
(
V y
x /V

y
x,+

)#
, (3.3.6)

and we can pull back ωyx to P yx n (V y
x )# via (3.3.6) and denote the resulting representation of

P yx n (V y
x )# also by ωyx. Moreover, since the image of K ′x,y n Jyx via fy n jy is contained in the
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group P yx n (V y
x )#, we can pull back ωyx to a representation φ̃yx of K ′x,y n Jyx . Let inf(φx,y) denote

the character of K ′x,y n Jyx obtained by the inflation of the character φx,y := φ|K′x,y via the map

K ′x,y n Jyx −→ (K ′x,y n Jyx)/Jyx ' K ′x,y.

Then by using the same argument as in the construction of φ′x in Section 3.2, we see that the
representation inf(φx,y)⊗ φ̃yx factors through the surjection

K ′x,y n Jyx � K ′x,y · Jyx = Ky
x .

We define (φ′)yx as the representation of Ky
x whose inflation to K ′x,y n Jyx is inf(φx,y)⊗ φ̃yx.

3.4 Compatibility with respect to compact induction

We keep the notation from the previous subsections. In this subsection, we will study the relation-
ship between the constructions of representations in Section 3.2 and Section 3.3 with the goal to
to compare the representations φ′x and φ′y for x and y sufficiently close to each other, see Corollary
3.4.9.

We define the character χV
y
x,+ of P yx by

χV
y
x,+(g) = sgnFp

(
detFp(g|V yx,+)

)
for g ∈ P yx ,

where detFp(g|V yx,+) denotes the determinant of the the Fp-linear map g|V yx,+ : V y
x,+ −→ V y

x,+, and

sgnFp : F×p −→ {±1} denotes the unique non-trivial quadratic character of F×p .

Note that K ′x,y ∩ J
y
x ⊂ K ′y ∩ Jy ⊂ K ′y,0+ is contained in the kernel of the map fy|K′x,y : K ′x,y −→

P yx ⊂ Sp(Jy/Jy,+), hence we can introduce the following notation.

Notation 3.4.1. Following [FKS23, Definition 4.1.1] we denote by δyx the character of K ′x,y that

is the precomposition of the character χV
y
x,+ with the map fy. We also denote by δyx the inflation

of this character to Ky
x via the surjection Ky

x = K ′x,y · J
y
x � K ′x,y · J

y
x/J

y
x
∼−→ K ′x,y/(K

′
x,y ∩ J

y
x).

Proposition 3.4.2. We have an isomorphism

φ′y|K′x,y ·Jy
∼−→ ind

K′x,y ·Jy
Ky
x

(
(φ′)yx ⊗ δyx

)
.

To prove Proposition 3.4.2, we prepare a general lemma.

Lemma 3.4.3. Let N be a locally profinite group and N2 ⊂ N1 be open subgroups of N . Let K be
a closed subgroup of N that normalizes N1 and N2. We suppose that

N1 ∩KN2 = N2.

Let τ be a smooth representation of KN2, and we write inf(τ) for the inflation of τ to K nN2 via
the natural map K nN2 −→ KN2. Then the representation indKnN1

KnN2
(inf(τ)) is isomorphic to the

inflation of indKN1
KN2

(τ) to K nN1 via the natural map K nN1 −→ KN1.
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Proof. Using Mackey decomposition and N1 ∩KN2 = N2, we have

indKnN1
KnN2

(inf(τ))|N1 ' indN1
N2

(τ |N2) = indN1
N1∩KN2

(τ |N1∩KN2) ' indKN1
KN2

(τ)|N1 .

Moreover, a straightforward calculation implies that the actions of K on the representation spaces
of these two representations agree.

Proof of Proposition 3.4.2. According to [Gér77, Theorem 2.4(b)] and [Fin22, Lemma 3.2] for the
positive characteristic case, we have

ωy|P yxn(Jy/Jy,+)# ' ind
P yxn(Jy/Jy,+)#

P yxn(V yx )#

(
ωyx ⊗ (χV

y
x,+ n 1)

)
.

(Note that the statement of [Gér77, Theorem 2.4(b)] omits the character χV
y
x,+ n 1, but this is only

a typographical error. For more details, see Footnote 1 of [Fin21a]). Hence, the definitions of φ̃y
and φ̃yx and the observation that jy : Jy −→ (Jy/Jy,+)# and jy : Jyx −→ (V y

x )# are surjective imply
that

φ̃y|K′x,ynJy ' ind
K′x,ynJy
K′x,ynJ

y
x

(
φ̃yx ⊗ (δyx n 1)

)
.

Moreover, the definitions of inf(φy) and inf(φx,y) imply that inf(φy)|K ′x,y n Jyx = inf(φx,y). Hence,
we have (

inf(φy)⊗ φ̃y
)
|K′x,ynJy ' ind

K′x,ynJy
K′x,ynJ

y
x

(
inf(φx,y)⊗ φ̃yx ⊗ (δyx n 1)

)
.

Since

Jy ∩K ′x,y · Jyx = Jy ∩
(
(K ′x ∩K ′y) · (Jx ∩ Jy) · Jy,+

)
=
(
Jy ∩K ′x ∩K ′y

)
· (Jx ∩ Jy) · Jy,+

=
(
G′(F )y,r ∩K ′x ∩K ′y

)
· (Jx ∩ Jy) · Jy,+ =

(
Jy,+ ∩K ′x ∩K ′y

)
· (Jx ∩ Jy) · Jy,+

= (Jx ∩ Jy) · Jy,+ = Jyx ,

Lemma 3.4.3 and the definitions of φ′y and (φ′)yx imply that

φ′y|K′x,y ·Jy ' ind
K′x,y ·Jy
Ky
x

(
(φ′)yx ⊗ δyx

)
.

Next, we consider the following special case that will be used in Corollary 3.4.9, in which we can
compare φ′x and φ′y, and which, via Corollary 3.6.14, will be used in Lemma 4.3.7 below to verify
Axiom 4.3.1 of [AFMO] in the setting of this paper. We suppose for the rest of this subsection that

G′(F )x,r, G
′(F )y,r ⊆ K ′x ⊆ K ′y (3.4.4)

and

G(F )y, r
2

+ ⊆ G(F )x, r
2

+ ⊆ G(F )x, r
2
⊆ G(F )y, r

2
. (3.4.5)

According to Condition (3.4.4), we have K ′x = K ′x,y. We can also prove Kx = Ky
x as follows.

Lemma 3.4.6. We have

K ′x · Jx = K ′x · (Jx ∩ Jy) = K ′x · (Jx ∩ Jy) · Jy,+.

In particular, we have Kx = Ky
x.
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Proof. According to Condition (3.4.5) and the definition of Jx and Jy, we have

Jx ⊆ G′(F )x,r · Jy and Jy,+ ⊆ G′(F )y,r · Jx,+. (3.4.6a)

According to the first inclusion in (3.4.6a), we have Jx = G′(F )x,r · (Jx ∩ Jy). Hence, the first
equality of the lemma follows from Condition (3.4.4).

We will prove the second equality. According to the second inclusion in (3.4.6a), we have Jy,+ =
G′(F )y,r · (Jx,+ ∩ Jy,+). Hence, using Condition (3.4.4), we have

K ′x · (Jx ∩ Jy) · Jy,+ = K ′x · Jy,+ · (Jx ∩ Jy) = K ′x · (Jx,+ ∩ Jy,+) · (Jx ∩ Jy) = K ′x · (Jx ∩ Jy) .

The last claim follows from the calculation

Kx = K ′x · Jx = K ′x · (Jx ∩ Jy) · Jy,+ = K ′x,y · (Jx ∩ Jy) · Jy,+ = Ky
x .

Now, we have two representations φ′x and (φ′)yx of the group Kx = Ky
x . We will prove in Propo-

sition 3.4.8 below that these two representations are isomorphic. To do this, we first prepare the
following lemma.

Lemma 3.4.7.

(1) The inclusion Jx ∩ Jy ⊆ Jx induces an isomorphism

(Jx ∩ Jy) / (Jx,+ ∩ Jy)
∼−→ Jx/Jx,+.

(2) The inclusion Jx ∩ Jy ⊆ (Jx ∩ Jy) · Jy,+ induces an isomorphism

(Jx ∩ Jy) / (Jx,+ ∩ Jy)
∼−→ (Jx ∩ Jy) · Jy,+/ (Jx,+ ∩ Jy) · Jy,+.

Proof. According to Condition (3.4.5) and the definition of Jx and Jy, we have

Jx = G′(F )x,r · (Jx ∩ Jy) ⊆ Jx,+ · (Jx ∩ Jy) ⊆ Jx.

Thus, we obtain that Jx = Jx,+ · (Jx ∩ Jy), which implies the first claim of the lemma.

We will prove the second claim. It suffices to show that (Jx ∩ Jy)∩ ((Jx,+ ∩ Jy) · Jy,+) = Jx,+ ∩ Jy.
According to Condition (3.4.5) and the definition of Jx and Jy, we have Jy,+ = G′(F )y,r·(Jx,+ ∩ Jy,+).
Hence, we have

Jx ∩ Jy,+ = Jx ∩
(
G′(F )y,r · (Jx,+ ∩ Jy,+)

)
=
(
Jx ∩G′(F )y,r

)
· (Jx,+ ∩ Jy,+)

=
(
G′(F )x,r ∩G′(F )y,r

)
· (Jx,+ ∩ Jy,+) = Jx,+ ∩ Jy,+.

Thus, we obtain that

(Jx ∩ Jy)∩((Jx,+ ∩ Jy) · Jy,+) = (Jx,+ ∩ Jy)·(Jx ∩ Jy,+) = (Jx,+ ∩ Jy)·(Jx,+ ∩ Jy,+) = Jx,+∩Jy.

Proposition 3.4.8. We have an isomorphism φ′x
∼−→ (φ′)yx as representations of Kx = Ky

x.
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Proof. Combining the isomorphisms in Lemma 3.4.7, we have isomorphisms

Jx/Jx,+
∼←− (Jx ∩ Jy) / (Jx,+ ∩ Jy)

∼−→ (Jx ∩ Jy) · Jy,+/ (Jx,+ ∩ Jy) · Jy,+
∼−→ V y

x /V
y
x,+.

We identify the space Jx/Jx,+ with the space V y
x /V

y
x,+ via this isomorphism. According to Lemma 3.3.2,

the symplectic pairing 〈 , 〉x on Jx/Jx,+ agrees with the symplectic pairing 〈 , 〉y on V y
x /V

y
x,+.

Hence, we obtain an isomorphism ωx|(Jx/Jx,+)#
∼−→ ωyx|(V yx /V yx,+)# . Then the definition of φ′x and

(φ′)yx implies that φ′x|Jx∩Jy ' (φ′)yx|Jx∩Jy . Moreover, since the isomorphisms in Lemma 3.4.7 are
compatible with the conjugate actions of K ′x, we also have φ′x|K′x·(Jx∩Jy) ' (φ′)yx|K′x·(Jx∩Jy). Now,
the lemma follows from Lemma 3.4.6.

Corollary 3.4.9. Let x, y ∈ B(G′, F ) and φ be a character of G′(F ) that is G-generic of depth r
relative to x. Let K ′x (resp. K ′y) be an open subgroup of G′(F )[x]G (resp. G′(F ) ∩ G(F )[y]G). We
suppose Conditions (3.4.4) and (3.4.5). Then we have an isomorphism

φ′y|K′x·Jy
∼−→ ind

K′x·Jy
Kx

(
φ′x ⊗ δyx

)
.

Proof. The corollary follows from Proposition 3.4.2 and Proposition 3.4.8.

3.5 A twist of the construction

In this subsection, we will twist the construction of φ′x in Section 3.2 by a quadratic character
to define the irreducible smooth representation φ+

x of Kx, see Definition 3.5.3. Then the relation
between the representations attached to two nearby points, i.e., the analogue of Corollary 3.4.9,
will be simpler, more precisely, it will no longer require an auxiliary character, see Corollary 3.5.7
below. For x ∈ B(G′, F ), recall that

εG/G
′

x : G′(F )[x]G −→ {±1}

denotes the quadratic character of G′(F )[x]G defined in [FKS23, Lemma 4.1.2], which is trivial on

the group G′(F )x,0+. Since K ′x ∩ Jx ⊆ G′(F )x,0+, we can inflate the restriction of ε
G/G′
x to Kx via

the map Kx = K ′x · Jx −→ K ′x · Jx/Jx ' K ′x/ (K ′x ∩ Jx) , and we denote the resulting character

again by ε
G/G′
x . The following lemma follows from [FKS23, Lemma 4.1.2].

Lemma 3.5.1 ([FKS23]). For all x, y ∈ B(G′, F ), we have(
εG/G

′
x · δxy

)
|Ky

x∩Kx
y

=
(
εG/G

′
y · δyx

)
|Ky

x∩Kx
y
.

Proof. Since Ky
x ∩ Kx

y =
(
K ′x ∩K ′y

)
·
(
Jyx ∩ Jxy

)
, and the characters ε

G/G′
x , δyx, ε

G/G′
y , and δxy are

trivial on the group Jyx ∩ Jxy , it suffices to show that(
εG/G

′
x · δxy

)
|K′x∩K′y =

(
εG/G

′
y · δyx

)
|K′x∩K′y ,

which holds by [FKS23, Lemma 4.1.2].
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Corollary 3.5.2. Let M ′ be a Levi subgroup of G′ and x, y ∈ B(M ′, F ). Let M be the centralizer
of AM ′ in G. Let {ι} be a commutative diagram

B(G′, F ) �
� //

	

B(G,F )

B(M ′, F )
?�

OO

� � // B(M,F )
?�

OO

of admissible embeddings of buildings, which we use to identify B(M ′, F ), B(M,F ), and B(G′, F )
with their images in B(G,F ). We assume that the images of the points x and y under the projection
to Bred(M ′, F ) agree and that the embedding ι : B(M,F ) −→ B(G,F ) is r/2-generic relative to x

and y in the sense of [KY17, Definition 3.2]. Then we have ε
G/G′
x |Ky

x∩Kx
y

= ε
G/G′
y |Ky

x∩Kx
y

.

Proof. Since the embedding ι : B(M,F ) −→ B(G,F ) is r/2-generic relative to y, we have Jy/Jy,+ =
(Jy ∩M(F )) / (Jy,+ ∩M(F )). On the other hand, since the images of the points x and y under the
projection to Bred(M ′, F ) agree, we have Jx ∩M(F ) = Jy ∩M(F ). Thus, we have

Jy/Jy,+ ⊇ V y
x = (Jx ∩ Jy) · Jy,+/Jy,+ ⊇ (Jy ∩M(F )) / (Jy,+ ∩M(F )) = Jy/Jy,+,

hence V y
x = Jy/Jy,+ and V y

x,+ = (V y
x )
⊥

= {0}. Thus, the definition of δyx implies that δyx = 1.
Similarly, we have δxy = 1. Now, the claim follows from Lemma 3.5.1.

Definition 3.5.3. For x ∈ B(G′, F ), we define the irreducible smooth representation φ+
x of Kx as

φ+
x = φ′x ⊗ εG/G

′
x .

Remark 3.5.4. In the case G′ = G, using Remark 3.2.3, we have ε
G/G′
x = 1 and φ+

x = φ|K′x·G(F )x,r .

Now we can rewrite Lemma 3.2.4, Lemma 3.2.5 and Corollary 3.4.9 in terms of φ+
x .

Lemma 3.5.5. The restriction of φ+
x to Jx is irreducible, and the restriction of φ+

x to the group
K ′x,0+ · Jx,+ is φ̂x|K′x,0+·Jx,+-isotypic. In particular, the restriction of φ+

x to G(F )x,r+ is trivial.

Proof. This follows from Lemma 3.2.4 and ε
G/G′
x being trivial on the group K ′x,0+ · Jx

Lemma 3.5.6. Suppose that C admits a nontrivial involution, with respect to which the character
φx of K ′x is unitary. Then the representation φ+

x is unitary.

Proof. This follows from Lemma 3.2.5 and ε
G/G′
x being a quadratic character.

Corollary 3.5.7. Let x, y ∈ B(G′, F ) and φ be a character of G′(F ) that is G-generic of depth r
relative to x. Let K ′x (resp. K ′y) be an open subgroup of G′(F )[x]G (resp. G′(F )[y]G). We suppose
Conditions (3.4.4) and (3.4.5). Then we have an isomorphism

φ+
y |K′x·Jy

∼−→ ind
K′x·Jy
Kx

(
φ+
x

)
.
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Proof. According to Corollary 3.4.9, we have φ′y|K′x·Jy ' ind
K′x·Jy
Kx

(φ′x ⊗ δ
y
x) . Hence, Lemmas 3.4.6

and 3.5.1 and the definition of φ+
x and φ+

y imply that

φ+
y |K′x·Jy =

(
φ′y ⊗ εG/G

′
y

)
|K′x·Jy ' ind

K′x·Jy
Kx

(
φ′x ⊗ δyx

)
⊗
(
εG/G

′
y |K′x·Jy

)
= ind

K′x·Jy
Kx

(
φ+
x ⊗ (εG/G

′
x )−1 ⊗ δyx

)
⊗
(
εG/G

′
y |K′x·Jy

)
' ind

K′x·Jy
Kx

(
φ+
x ⊗ (εG/G

′
x )−1 ⊗

(
εG/G

′
y |Kx

)
⊗ δyx

)
' ind

K′x·Jy
Kx

(
φ+
x ⊗ (δxy )−1

)
.

To prove the corollary, it suffices to show that δxy = 1. According to Lemma 3.4.7(1), we have

V x
y = (Jx ∩ Jy) · Jx,+/Jx,+ = Jx/Jx,+.

Hence, we obtain that V x
y,+ =

(
V x
y

)⊥
= {0}. Thus, the definition of δxy implies that δxy = 1.

3.6 Representations from Heisenberg–Weil data

In this subsection, we will generalize the construction of φ+
x and the comparison result Corol-

lary 3.5.7, to start with the following more general input.

Definition 3.6.1. A Heisenberg–Weil datum is a 5-tuple
(
(
−→
G),−→r , (x, {ι}),K0

x,
−→
φ
)

where

(1)
−→
G =

(
G0 ⊆ G1 ⊆ . . . ⊆ Gn = G

)
with Gi a tamely ramified twisted Levi subgroup of G for

0 ≤ i ≤ n− 1 and some n ∈ Z≥1.

(2) −→r = (r0, . . . , rn−1) is a sequence of real numbers satisfying 0 < r0 < r1 < · · · < rn−1.

(3) x is a point of B(G0, F ), and {ι} is a collection of compatible admissible embeddings of buildings

B(G0, F ) ↪→ B(G1, F ) ↪→ · · · ↪→ B(Gn, F ).

We identify points in B(G0, F ) with their images via the embeddings {ι}.

(4) K0
x is an open subgroup of G0(F )[x]G .

(5)
−→
φ = (φ0, . . . , φn−1) is a sequence of characters, where φi is a character of Gi(F ). We suppose
that φi is Gi+1-generic of depth ri relative to x in the sense of [Fin, Definition 3.5.2] for all
0 ≤ i ≤ n− 1.

A Heisenberg–Weil datum is a generalization of the part of the datum that Yu ([Yu01, Section 3])
uses to construct the positive-depth factor of his supercuspidal types via the theory of Heisenberg–
Weil representations of finite groups. More precisely, we allow that some of the twisted Levi
subgroups Gi are equal (using the notion of generic characters as in [Fin, Definition 3.5.2.] in
the case of equal twisted Levi subgroups), that Z(G0)/Z(G) is isotropic, that x is any point
in B(G0, F ), and we work with the more general group K0

x ⊆ G0(F )[x]G and the more general
coefficients C. Following the construction in [Yu01, Section 4], which we will recall due to our more
general set-up and for the convenience of the reader, we will construct from a Heisenberg–Weil
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datum an irreducible representation κx of a compact, open subgroup Kx of G(F ). We will then
prove a comparison result for the representations κx attached to different appropriate points x, see
Proposition 3.6.13 below. This result will then be used in Section 4 as follows. In Section 4, we will
construct an irreducible representation ρx of Kx following the construction in [Yu01, Section 4] and
[KY17, Section 7] from a G-datum Σ (see [KY17, 7.2] and Definition 4.1.1 below for the definition
of G-datum). To define ρx, we will use the representation κx constructed from the Heisenberg–Weil
datum obtained as a part of Σ, and Proposition 3.6.13 is the key to proving that the representations
ρx satisfy Axiom 4.3.1(5) of [AFMO], see Lemma 4.3.7.

Let
(
(
−→
G),−→r , (x, {ι}),K0

x,
−→
φ
)

be a Heisenberg–Weil datum. We fix a maximal torus T of G0 such
that the splitting field E of T is tamely ramified over F and such that x ∈ A(G0, T, E). We will
now roughly repeat the construction of Section 3.5 for each pair Gi−1 ⊆ Gi (1 ≤ i ≤ n). More
precisely, for 1 ≤ i ≤ n, we define the concave functions fi and f+

i on Φ(Gi, T ) ∪ {0} by

fi(α) =

{
ri−1 α ∈ Φ(Gi−1, T ) ∪ {0},
ri−1

2 otherwise,
and f+

i (α) =

{
ri−1 α ∈ Φ(Gi−1, T ) ∪ {0},
ri−1

2 + otherwise.

We define the compact, open subgroups J ix and J ix,+ of Gi(F ) as

J ix := Gi(F )x,fi and J ix,+ := Gi(F )x,f+i
.

As explained in [Yu01, Section 1, Section 2], the groups J ix and J ix,+ are independent of the choice

of a maximal torus T of G0. For 1 ≤ i ≤ n, we write J≤ix = J1
xJ

2
x · · · J ix and J≤ix,+ = J1

x,+J
2
x,+ · · · J ix,+.

We also write J≤0
x = J≤0

x,+ = {1}. For 0 ≤ i ≤ n, we define the open subgroups Ki
x and Ki

x,+ of

Gi(F ) as
Ki
x = K0

x · J≤ix and Ki
x,+ = K0

x,+ · J
≤i
x,+,

where K0
x,+ = K0

x ∩ G0(F )x,0+. We note that Ki
x = Ki−1

x · J ix and Ki
x,+ = Ki−1

x,+ · J ix,+ for all

1 ≤ i ≤ n. We write Kx := Kn
x , Kx,+ := Kn

x,+, and Jx := J≤nx . We also define the compact, open,
pro-p subgroup Kx,0+ of Kx by

Kx,0+ = Kx ∩G(F )x,0+ = K0
x,+ · Jx.

We note that we have Kx = K0
x ·Kx,0+.

Applying the construction in Section 3.5 to

G = Gi, G′ = Gi−1, φ = φi−1, K ′x = Ki−1
x , (3.6.2)

we obtain an irreducible representation φ+
i−1,x of Ki

x for all 1 ≤ i ≤ n. According to Lemma 3.5.5,

the restriction of φ+
i−1,x to the group Gi(F )x,ri−1+ is trivial. Since we have

Ki
x ∩ J i+1

x J i+2
x · · · Jnx ⊆ Gi(F )x,ri ⊆ Gi(F )x,ri−1+

for 1 ≤ i ≤ n−1, we can inflate the representation φ+
i−1,x to an irreducible representation inf(φ+

i−1,x)
of the group Kx via the surjection

Kx = Ki
x · J i+1

x J i+2
x · · · Jnx −→ Ki

x · J i+1
x J i+2

x · · · Jnx /J i+1
x J i+2

x · · · Jnx ' Ki
x/
(
Ki
x ∩ J i+1

x J i+2
x · · · Jnx

)
.
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We define the irreducible representation κx of Kx as

κx = inf(φ+
0,x)⊗ inf(φ+

1,x)⊗ · · · ⊗ inf(φ+
n−2,x)⊗ φ+

n−1,x.

We note that the representation φ+
x in Section 3.5 agrees with the representation κx constructed

from the Heisenberg–Weil datum
(
(G′ ⊆ G), (r), (x, {ι}),K ′x, (φ)

)
, i.e., the construction of κx is

a generalization of the construction of φ+
x in Section 3.5. If n > 1, then we also write κn−1

x =
inf(φ+

0,x) ⊗ inf(φ+
1,x) ⊗ · · · ⊗ inf(φ+

n−2,x). We note that the representation κn−1 is trivial on Jnx ,

and the restriction of κn−1
x to Kn−1

x agrees with the representation obtained by applying the above
construction to the Heisenberg–Weil datum(

(G0 ⊆ G1 ⊆ . . . ⊆ Gn−1), (r0, . . . , rn−2), (x, {ι}),K0
x, (φ0, . . . , φn−2)

)
.

We define another representation κnt
x of Kx as follows:

Notation 3.6.3. For 1 ≤ i ≤ n, let φ′i−1,x denote the irreducible representation of Ki
x obtained by

applying the construction in Section 3.2 to (3.6.2). Replacing φ+
i−1,x by φ′i−1,x in the definition of κx,

we can define another representation κnt
x of Kx. We call the construction of the representation κx

(resp. κnt
x ) from the Heisenberg–Weil datum

(
(
−→
G),−→r , (x, {ι}),K0

x,
−→
φ
)

the twisted Heisenberg–Weil
construction (resp. non-twisted Heisenberg–Weil construction).

The difference between κx and κnt
x can be described by using the characters ε

Gi/Gi−1

x defined in
Section 3.5 as follows.

Notation 3.6.4. Let ε
−→
G
x be the character of Kx that is trivial on Jx and satisfies

ε
−→
G
x |K0

x
=

n∏
i=1

εG
i/Gi−1

x |K0
x
.

The definitions of κx and κnt
x imply that we have

κx = κnt
x ⊗ ε

−→
G
x .

We record some properties of κx.

Lemma 3.6.5. The restriction of the representation κx to the groups Jx and Kx,0+ are irreducible.

Proof. We will prove that the restriction of κx to Jx is irreducible by induction on n. When n = 1,
the claim follows from Lemma 3.5.5. Suppose that n > 1. Since the group Jx is compact, it suffices
to show that

dimC (EndJx (κx|Jx)) = 1.

We note that Jx = J≤n−1
x · Jnx . Since the representation κn−1

x is trivial on Jnx , and the restriction
of the representation φ+

n−1,x to Jnx is irreducible by Lemma 3.5.5, we have the isomorphism

End
J≤n−1
x

(
κn−1
x |

J≤n−1
x

)
∼−→ EndJx

(
(κn−1
x ⊗ φ+

n−1,x)|Jx
)

= EndJx (κx|Jx)

defined by Φ 7→ Φ ⊗ idφ+n−1,x
. By combining this isomorphism with the induction hypothesis

dimC
(
End

J≤n−1
x

(κn−1
x |

J≤n−1
x

)
)
= 1, we obtain the claim. Since Jx ⊆ Kx,0+, the restriction of κx to

Kx,0+ is also irreducible.
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Lemma 3.6.6. Suppose that C admits a nontrivial involution, with respect to which the restrictions
of the characters φi to Ki

x are unitary for all 0 ≤ i ≤ n− 1. Then the representations κx and κnt
x

are unitary.

Proof. The lemma follows from Lemma 3.2.5, Lemma 3.5.6, and the definition of κx and κnt
x .

Notation 3.6.7. For 0 ≤ i ≤ n − 1, let φ̂i,x denote the character of K0
x · Gi(F )x,0 · G(F )x, ri

2
+

defined as in [Yu01, Section 4]. We define the character θx of Kx,+ as

θx =
n−1∏
i=0

φ̂i,x|Kx,+ .

Lemma 3.6.8. The restriction of the representation κx to the group Kx,+ is θx-isotypic.

Proof. The lemma follows from Lemma 3.5.5 and the definition of κx and θx (see also [Yu01,
Proposition 4.4]).

According to Lemma 3.5.5 and the construction of κx, the representation κx is trivial on the group
G(F )x,rn−1+. For later use, we will prove a stronger version of this claim.

Lemma 3.6.9. Let y ∈ B(G0, F ) and rn−1 < r such that G(F )y,r ⊆ Kx,+. Then the representation
κx is trivial on the group G(F )y,r.

Proof. Let S0 be a maximal split torus of G0 such that x, y ∈ A(G0, S0, F ). We fix U ∈ U(ZG(S0)).
According to [KY17, 4.3 Proposition (a)], we have

G(F )y,r = (G(F )y,r ∩ U(F )) ·
(
G(F )y,r ∩ ZG(S0)(F )

)
·
(
G(F )y,r ∩ U(F )

)
.

Hence, to prove the lemma, it suffices to show that the representation κx is trivial on the groups
G(F )y,r ∩ U(F ), G(F )y,r ∩ ZG(S0)(F ), and G(F )y,r ∩ U(F ). Since x, y ∈ A(G0, S0, F ), we obtain
that

G(F )y,r ∩ ZG(S0)(F ) = ZG(S0)(F )y,r = ZG(S0)(F )x,r ⊂ G(F )x,rn−1+.

Hence, the representation κx is trivial on the group G(F )y,r ∩ ZG(S0)(F ).

We will prove that the representation κx is trivial on the group G(F )y,r ∩ U(F ) for all U ∈
U(ZG(S0)). Since G(F )y,r ⊆ Kx,+ and the restriction of κx to Kx,+ is θx-isotypic, it suffices
to show that the character θx is trivial on the group Kx,+∩U(F ). Since φi is a character of Gi(F ),
we obtain that φi is trivial on the group Gi(F )∩U(F ) for each 0 ≤ i ≤ n−1. Then the claim that θx
is trivial on the group Kx,+ ∩U(F ) follows from the definition of φ̂i,x and θx =

∏n−1
i=0 φ̂i,x|Kx,+ .

Let y ∈ B(G0, F ) and let K0
y be an open subgroup of G0(F ) ∩G(F )[y]G such that

G0(F )y,r0 , G
0(F )x,r0 ⊆ K0

x,+ ⊆ K0
x ⊆ K0

y (3.6.10)

and

Gi(F )
y,
ri−1

2
+
⊆ Gi(F )

x,
ri−1

2
+
⊆ Gi(F )

x,
ri−1

2
⊆ Gi(F )

y,
ri−1

2
(3.6.11)
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for all 1 ≤ i ≤ n. According to Lemma 3.3.1, the 5-tuple
(

(
−→
G),−→r , (y, {ι}),K0

y ,
−→
φ
)

is a Heisenberg–

Weil datum. Condition (3.6.11) ensures that Condition (3.4.5) is satisfied for the setting of (3.6.2)
for all 1 ≤ i ≤ n. We will prove that Condition (3.4.4) is also satisfied in these settings. For later
use, we will prove the following stronger statement.

Lemma 3.6.12. We have
Gi(F )x,ri , G

i(F )y,ri ⊆ Ki
x,+

for all 0 ≤ i ≤ n− 1 and
Ki
x ⊆ K0

x · J≤iy ⊆ Ki
y

for all 0 ≤ i ≤ n. In particular, Condition (3.4.4) is satisfied for the setting of (3.6.2) for all
1 ≤ i ≤ n.

Proof. We will prove the lemma by induction on i. When i = 0, the claims of the lemma fol-
low from (3.6.10). Suppose that i > 0. The definitions of J ix and Ki

x imply that Gi(F )x,ri ⊆
Gi(F )x,ri−1 ⊆ J ix,+ ⊆ Ki

x,+. We will prove that Gi(F )y,ri ⊆ Ki
x,+. According to (3.6.11), we have

J iy,+ ⊆ Gi−1(F )y,ri−1 · J ix,+. Hence, we have

Gi(F )y,ri ⊆ Gi(F )y,ri−1 ⊆ J iy,+ ⊆ Gi−1(F )y,ri−1 · J ix,+.

Moreover, the induction hypothesis implies that Gi−1(F )y,ri−1 ⊆ Ki−1
x,+ . Thus, we conclude that

Gi(F )y,ri ⊆ Ki−1
x,+ · J ix,+ = Ki

x,+.

Next, we will prove that Ki
x ⊆ K0

x · J≤iy . According to (3.6.11), we have J ix ⊆ Gi−1(F )x,ri−1 · J iy.
Moreover, the induction hypothesis implies that Gi−1(F )x,ri−1 ⊆ Ki−1

x ⊆ K0
x · J≤i−1

y . Thus, we
obtain that

Ki
x = Ki−1

x · J ix ⊆ Ki−1
x ·Gi−1(F )x,ri−1 · J iy ⊆ K0

x · J≤i−1
y · J iy = K0

x · J≤iy .

Finally, since K0
x ⊆ K0

y , we have K0
x · J≤iy ⊆ K0

y · J≤iy = Ki
y.

The following proposition is a generalization of Corollary 3.5.7 to the general twisted Heisenberg–
Weil construction.

Proposition 3.6.13. Let
(
(
−→
G),−→r , (x, {ι}),K0

x,
−→
φ
)

be a Heisenberg–Weil datum. Let y and K0
y be

as above, i.e., y ∈ B(G0, F ) and K0
y is an open subgroup of G0(F ) ∩ G(F )[y]G such that (3.6.10)

and (3.6.11) hold. Then we have an isomorphism

κy|K0
x·Jy

∼−→ ind
K0
x·Jy

Kx
(κx).

Proof. We will prove the proposition by the induction on n. When n = 1, the claim follows from
(3.6.10), (3.6.11), Lemma 3.6.12, and Corollary 3.5.7. Suppose that n > 1. Then for z ∈ {x, y}, we
have by definition and the induction hypothesis that

κz
∼−→ κn−1

z ⊗ φ+
n−1,z, and κn−1

y |
K0
x·J
≤n−1
y

' ind
K0
x·J
≤n−1
y

Kn−1
x

(
κn−1
x |Kn−1

x

)
. (3.6.13a)
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Moreover, according to (3.6.10), (3.6.11), Lemma 3.6.12, and Corollary 3.5.7, we obtain that

φ+
n−1,y|Kn−1

x ·Jny
' ind

Kn−1
x ·Jny

Kx
(φ+
n−1,x). (3.6.13b)

To prove the proposition, we will inflate the representation κn−1
x to Kx · Jny as follows. According

to Lemma 3.6.12, we have Kn−1
x ∩ Jny ⊆ Gn−1(F ) ∩ Jny = Gn−1(F )y,rn−1 ⊆ Kn−1

x,+ . Then applying
Lemma 3.6.9 to κn−1

x |Kn−1
x

, we obtain that the representation κn−1
x is trivial on the group Kn−1

x ∩
Jny ⊆ Gn−1(F )y,rn−1 . Hence, we can inflate the representation κn−1

x to the group Kx · Jny via the
map Kx ·Jny � Kx ·Jny /Jny ' Kx/

(
Kx ∩ Jny

)
= Kx/

(
Kn−1
x ∩ Jny

)
·(Jnx ∩Jny ), where the last equality

follows from Lemma 3.4.6. We write inf(κn−1
x ) for this representation of Kx · Jny = Kn−1

x · Jny .

Now, combining (3.6.13a) with (3.6.13b), we obtain that

ind
K0
x·Jy

Kx
κx ' ind

K0
x·Jy

Kn−1
x ·Jny

(
ind

Kn−1
x ·Jny

Kx
κx

)
' ind

K0
x·Jy

Kn−1
x ·Jny

(
ind

Kn−1
x ·Jny

Kx
(κn−1
x ⊗ φ+

n−1,x)
)

' ind
K0
x·Jy

Kn−1
x ·Jny

(
inf(κn−1

x )⊗ ind
Kn−1
x ·Jny

Kx
φ+
n−1,x

)
' ind

K0
x·Jy

Kn−1
x ·Jny

(
inf(κn−1

x )⊗ φ+
n−1,y|Kn−1

x ·Jny

)
' ind

K0
x·Jy

Kn−1
x ·Jny

(
inf(κn−1

x )
)
⊗ φ+

n−1,y|K0
x·Jy ' inf

(
ind

K0
x·J
≤n−1
y

Kn−1
x

(κn−1
x |Kn−1

x
)
)
⊗ φ+

n−1,y|K0
x·Jy

' inf
(
κn−1
y |

K0
x·J
≤n−1
y

)
⊗ φ+

n−1,y|K0
x·Jy ' κ

n−1
y |K0

x·Jy ⊗ φ
+
n−1,y|K0

x·Jy

=
(
κn−1
y ⊗ φ+

n−1,y

)
|K0

x·Jy = κy|K0
x·Jy ,

where inf
(
ind

K0
x·J
≤n−1
y

Kn−1
x

(κn−1
x |Kn−1

x
)
)

and inf
(
κn−1
y |

K0
x·J
≤n−1
y

)
denote the inflations of the representa-

tions ind
K0
x·J
≤n−1
y

Kn−1
x

(
κn−1
x |Kn−1

x

)
' κn−1

y |
K0
x·J
≤n−1
y

of K0
x · J≤n−1

y to the group K0
x · Jy via the map

K0
x·Jy = K0

x·J≤n−1
y ·Jny � K0

x·J≤n−1
y ·Jny /Jny ' K0

x·J≤n−1
y /

(
K0
x · J≤n−1

y ∩ Jny
)

= K0
x·J≤n−1

y /Gn−1(F )y,rn−1 .

We record an immediate corollary of Proposition 3.6.13 that will be used to prove Lemma 4.3.7
below, which in turn is used to verify that the types constructed by Kim and Yu satisfy the axioms
of [AFMO].

Corollary 3.6.14. Let
(
(
−→
G),−→r , (x, {ι}),K0

x,
−→
φ
)

be a Heisenberg–Weil datum. Let y ∈ B(G0, F )
and K0

y be an open subgroup of G0(F )∩G(F )[y]G. Suppose that G0(F )y,0+ ⊆ G0(F )x,0+ ⊆ K0
x ⊆ K0

y

and Gi(F )
y,
ri−1

2
+
⊆ Gi(F )

x,
ri−1

2
+
⊆ Gi(F )

x,
ri−1

2
⊆ Gi(F )

y,
ri−1

2
for all 1 ≤ i ≤ n. Then we have an

isomorphism

κy|K0
x·Ky,0+

∼−→ ind
K0
x·Ky,0+

Kx
(κx).

Proof. According to the assumptions, we have G0(F )y,r0 , G
0(F )x,r0 ⊆ G0(F )x,0+ = K0

x,+ ⊆ K0
x ⊆

K0
y . Moreover, we have K0

x ·Ky,0+ = K0
x · (K0

y ∩G0(F )y,0+) · Jy = K0
x · Jy. Thus, the claim follows

from Proposition 3.6.13.
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3.7 An extension of the non-twisted Heisenberg–Weil representation

Let HW(Σ) =
(
(
−→
G),−→r , (x, {ι}),K0

x,
−→
φ
)

be a Heisenberg–Weil datum and M0 be a Levi sub-
group of G0. Let M i denote the centralizer of AM0 in Gi for 0 ≤ i ≤ n. According to [KY17,
2.4 Lemma (a), (b)], M i is a Levi subgroup of Gi and a tamely ramified twisted Levi subgroup of
M := Mn. Note that by construction Z(M0)/Z(M i) is anisotropic for all 0 ≤ i ≤ n. We write
−→
M =

(
M0 ⊆M1 ⊆ . . . ⊆Mn

)
. We fix a commutative diagram {ι}

B(G0, F ) //

	

B(G1, F ) // · · ·

	

// B(Gn, F )

B(M0, F )

OO

// B(M1, F )

OO

// · · · // B(Mn, F )

OO

of admissible embeddings of Bruhat–Tits buildings and identify a point in B(M0, F ) with its images
via the embeddings {ι}. We assume that x ∈ B(M0, F ). We define the open subgroup KM0 of
M0(F )[x]M by KM0 = M0(F ) ∩K0

x. The following lemma is proved in [KY17, 5.3 Lemma] for a
slightly less general notion of generic characters and assuming the additional hypothesis that p is
not a torsion prime for the dual absolute root datum of G.

Lemma 3.7.1. The characters φi|M i(F ) are M i+1-generic of depth ri relative to x for all 0 ≤ i ≤
n − 1. Thus, the 5-tuple HW(Σ)M =

(
(
−→
M),−→r , (x, {ι}),KM0 , (φ0|M0(F ), . . . , φn−1|Mn−1(F ))

)
is a

Heisenberg–Weil datum.

Proof. Let 0 ≤ i ≤ n − 1. Since the character φi is Gi+1-generic of depth ri relative to the
point x, the character φi is trivial on Gi(F )x,ri+, and there exists an element X∗i ∈ Lie∗(Gi)G

i
(F )

which is Gi+1-generic of depth −ri in the sense of [Fin, Definition 3.5.2] such that the restric-
tion of φi to Gi(F )x,ri/G

i(F )x,ri+ ' Lie(Gi)(F )x,ri/Lie(Gi)(F )x,ri+ is given by Ψ ◦ X∗i . Let

X∗M,i ∈ Lie∗(M i)M
i
(F ) denote the restriction of X∗i to Lie(M i). Since the restriction of φi|M i(F ) to

M i(F )x,ri/M
i(F )x,ri+ is given by Ψ ◦X∗M,i, it suffices to show that X∗M,i is M i+1-generic of depth

−ri. Since X∗i has depth −ri at x, the restriction of ψ ◦X∗i to Lie(Gi)x,ri is non-trivial. Moreover,
the restriction map from Lie∗(Gi) to Lie∗(M i) yields, by definition of M i, an isomorphism of the
subspace Lie∗(Gi)AM0 ⊂ Lie∗(Gi) with Lie∗(M i). Hence, since X∗i ∈ Lie∗(Gi)AM0 ⊂ Lie∗(Gi), the
restriction of ψ ◦ X∗i to Lie(M i)x,ri is also non-trivial. Thus, X∗M,i satisfies Condition (GE0) of
[Fin, Definition 3.5.2]. Condition (GE1) of [Fin, Definition 3.5.2] follows from the same condition
for X∗i because Φ(M i+1, T ) r Φ(M i, T ) ⊆ Φ(Gi+1, T ) r Φ(Gi, T ) for T some maximal torus of
M i that splits over a tame extension E/F . Moreover, Condition (GE2) of [Fin, Definition 3.5.2]
follows from the genericity of X∗i and the fact that the absolute Weyl group of M i relative to a
maximal torus T of M i is the intersection of the absolute Weyl groups of M i+1 and Gi relative to
T .

The last claim follows from the first claim and the fact that M i are tamely ramified twisted Levi
subgroups of M for all 0 ≤ i ≤ n.

Let κnt
M denote the representation obtained from the Heisenberg–Weil datum HW(Σ)M via the

non-twisted Heisenberg–Weil construction. Replacing the Heisenberg–Weil datum HW(Σ) with
HW(Σ)M in the definitions of Kx, Kx,0+, J ix, and J ix,+ we define the open subgroups KM and
KM,0+ of M(F ) and the compact, open subgroups J iM and J iM,+ of M i(F ) for 1 ≤ i ≤ n.
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Lemma 3.7.2. The group NG0(M0)(F )[x]M0
normalizes the groups J iM and J iM,+ for 1 ≤ i ≤ n.

If the group NG0(M0)(F )[x]M0
normalizes the group KM0, it also normalizes the groups KM and

KM,0+.

Proof. The first claim follows from the definitions of NG0(M0)(F )[x]M0
, J iM , and J iM,+, and the

observation that NG0(M0)(F )[x]M0
= NG0(M0)(F )[x]Mi

, because Z(M0)/Z(M i) is anisotropic. The
second claim follows from the first claim and the definition of KM and KM,0+.

Let 0 ≤ i ≤ n−1. Since φi is a character of Gi(F ) ⊇ G0(F ) and since NG0(M0)(F )[x]M0
normalizes

(M i,M i+1)(F )x,ri+,
ri
2

+, the character φ̂i|Ji+1
M,+

can be extended to a character of NG0(M0)(F )[x]M0
·

J i+1
M,+. Hence the conjugation action of NG0(M0)(F )[x]M0

on J i+1
M arising from Lemma 3.7.2 induces

a group homomorphism
NG0(M0)(F )[x]M0

−→ Sp
(
J i+1
M /J i+1

M,+

)
. (3.7.3)

We define the representation φ̃′i,M of NG0(M0)(F )[x]M0
by composing (3.7.3) with the Weil repre-

sentation of Sp(J i+1
M /J i+1

M,+) associated with the central character ι−1
p and taking the tensor product

of the resulting representation with φi|NG0 (M0)(F )[x]
M0

.

Now, we assume that the group NG0(M0)(F )[x]M0
normalizes the group KM0 . This assumption is

satisfied, for instance, if we take KM0 = M0(F )x or KM0 = M0(F )x,0. According to Lemma 3.7.2,
NG0(M0)(F )[x]M0

·KM is an open subgroup of M(F ).

Proposition 3.7.4. There exists a unique extension κ̃nt
M of κnt

M to NG0(M0)(F )[x]M0
·KM such that

the restriction of κ̃nt
M to NG0(M0)(F )[x]M0

is given by the representation φ̃′0,M ⊗ φ̃′1,M ⊗ · · · ⊗ φ̃′d,M .

Proof. The proposition follows from the definitions of κnt
M and φ̃′i,M .

The following lemma is an analogue of Lemma 3.6.6 and will be used in the proof of Proposition 4.3.4
below.

Lemma 3.7.5. Suppose that C admits a nontrivial involution, with respect to which the restrictions
of the characters φi to Ki

x are unitary for all 0 ≤ i ≤ n−1. Then the representation κ̃nt
M is unitary.

Proof. Using the same argument as in Lemma 3.2.5, we obtain that the representations φ̃′i,M of

NG0(M0)(F )[x]M0
are unitary for all 0 ≤ i ≤ n − 1. Hence κ̃nt

M restricted to NG0(M0)(F )[x]M0
is

unitary. Note that NG0(M0)(F )[x]M0
· KM = NG0(M0)(F )[x]M0

· KM,0+ and KM,0+ is a normal,

compact, pro-p subgroup of NG0(M0)(F )[x]M0
·KM,0+. Thus, by integrating an NG0(M0)(F )[x]M0

-

invariant Hermitian form over KM,0+, we obtain an NG0(M0)(F )[x]M0
· KM -invariant Hermitian

form.
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4 Hecke algebras for the types constructed by Kim and Yu

In this section we will show that the types (Kx0 , ρx0) constructed by Kim and Yu ([KY17]), but
twisted by a quadratic character introduced in [FKS23] and allowing more general coefficients C, see
Section 4.1 for the definitions, satisfy all of the axioms necessary for [AFMO, Theorems 3.10.10 and
4.4.8 ] to hold so that we obtain an isomorphism between the Hecke algebra attached to (Kx0 , ρx0)
and a depth-zero Hecke algebra (see Theorem 4.3.11) as well as an explicit description of those
Hecke algebras as a semi-direct product of an affine Hecke algebra with a twisted group algebra
(see Theorem 4.4.1). The results obtained along the way might be of independent interest.

4.1 A twist of the construction by Kim and Yu

We begin by recalling the notion of a G-datum following Kim and Yu ([KY17]), but adjusted
to our more general coefficient field C. From those data we will afterwards construct compact,
open subgroups and representations of some of those following the construction of Kim and Yu
([KY17]), but including a twist by the quadratic character of [FKS23]. Let d ∈ Z≥0 and let
−→
G =

(
G0 ( G1 ( . . . ( Gd = G

)
be a sequence of twisted Levi subgroups of G. Let M0 be a Levi

subgroup of G0. We denote by M i the centralizer of AM0 in Gi for 0 ≤ i ≤ d. According to [KY17,
2.4 Lemma (a), (b)], M i is a Levi subgroup of Gi and a tamely ramified twisted Levi subgroup of
M := Md. Note that by construction Z(M0)/Z(M i) is anisotropic for all 0 ≤ i ≤ d.

Definition 4.1.1 ([KY17, 7.2]). A G-datum is a 5-tuple
(
(
−→
G,M0),−→r , (x0, {ι}), (KM0 , ρM0),

−→
φ
)

satisfying the following:

D1
−→
G =

(
G0 ( G1 ( . . . ( Gd = G

)
is a sequence of twisted Levi subgroups of G that split over

a tamely ramified extension of F for some d ∈ Z≥0, and M0 is a Levi subgroup of G0. Let
M0 ⊆M1 ⊆ . . . ⊆Md be as constructed above.

D2 −→r = (r0, . . . , rd) is a sequence of real numbers satisfying 0 ≤ r0 ≤ r1 ≤ · · · ≤ rd, where all of
the inequalities are strict except for the last one. We also write r−1 = 0.

D3 x0 is a point of B(M0, F ), and {ι} is a commutative diagram

B(G0, F ) //

	

B(G1, F ) // · · ·

	

// B(Gd, F )

B(M0, F )

OO

// B(M1, F )

OO

// · · · // B(Md, F )

OO

of admissible embeddings of buildings that is −→r /2-generic relative to x0 in the sense of
[KY17, 3.5 Definition], where −→r /2 = (0, r02 , · · · ,

rd−1

2 ). We identify a point in B(M0, F ) with
its images via the embeddings {ι}.

D4 KM0 is a compact, open subgroup of M0(F )x0 containing M0(F )x0,0, and ρM0 is an irreducible
smooth representation ofKM0 such that ((G0,M0), (x0, ι : B(M0, F ) −→ B(G0, F )), (KM0 , ρM0))
is a depth-zero G0-datum as in [AFMO, Definition 5.1.1] (following [KY17, 7.1]), where
ι : B(M0, F ) −→ B(G0, F ) is the embedding from {ι}.
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D5
−→
φ = (φ0, . . . , φd) is a sequence of characters, where φi is a character of Gi(F ). We assume that
φd = 1 if rd−1 = rd and otherwise φd is of depth rd. We also assume that φi is Gi+1-generic
of depth ri relative to x0 in the sense of [Fin, Definition 3.5.2] for all 0 ≤ i ≤ d− 1.

From now on, we let Σ =
(
(
−→
G,M0),−→r , (x0, {ι}), (KM0 , ρM0),

−→
φ
)

be a G-datum with r0 > 0. The
case r0 = 0 corresponds to a depth-zero G-datum that was already treated in [AFMO, Section 5]
and the reduction-to-depth-zero results in this case are trivial. According to Lemma 3.3.1, for
each x ∈ Ax0 := x0 + (X∗(AM )⊗Z R) such that the diagram {ι} is −→r /2-generic relative to x, the

tuple Σx =
(
(
−→
G,M0),−→r , (x, {ι}), (KM0 , ρM0),

−→
φ
)

is also a G-datum. From this G-datum Σx, we
will now construct pairs (K0

x, ρ
0
x), (Kx, ρx), and (KM , ρM ) of compact subgroups and irreducible

representations thereof following the construction of Kim and Yu ([KY17, Section 7]), which is
based on [Yu01, Section 4], but twisted by the quadratic character from [FKS23, Section 4] and
allowing more general coefficients. If C = C, these will be types for finite products of Bernstein
blocks for the groups G0, G, and M , respectively. If C = C and KM0 = M(F )x0 , then the resulting
types are types for single Bernstein blocks.

The pair (K0
x, ρ

0
x) is the depth-zero pair attached to the depth-zero G0-datum

(
(G0,M0),−→r , (x0, ι),

(KM0 , ρM0)
)

in [AFMO, Section 5.1], which we now briefly recall for the convenience of the reader.
For x ∈ Ax0 , we define

K0
x = KM0 ·G0(F )x,0 and K0

x,+ = G0(F )x,0+. (4.1.2)

If ι : B(M0, F ) −→ B(G0, F ) is 0-generic relative to x, then we define the irreducible smooth
representation ρ0

x of K0
x/K

0
x,+ as the composition of ρM0 with the inverse of the isomorphism

KM0/M0(F )x,0+
∼−→ K0

x/K
0
x,+ that comes from the inclusion KM0 ⊆ K0

x . We also regard ρ0
x as

an irreducible smooth representation of K0
x that is trivial on K0

x,+.

In order to construct the pairs (Kx, ρx) and (KM , ρM ), we let x ∈ Ax0 and define several compact,
open subgroups of G(F ) and M(F ) as follows

Kx = K0
xG

1(F )x, r0
2
G2(F )x, r1

2
· · ·Gd(F )

x,
rd−1

2
,

Kx,0+ = G0(F )x,0+G
1(F )x, r0

2
G2(F )x, r1

2
· · ·Gd(F )

x,
rd−1

2
,

Kx,+ = G0(F )x,0+G
1(F )x, r0

2
+G

2(F )x, r1
2

+ · · ·Gd(F )
x,
rd−1

2
+
,

KM = KM0M1(F )x, r0
2
M2(F )x, r1

2
· · ·Md(F )

x,
rd−1

2
,

KM,0+ = M0(F )x0,0+M
1(F )x0, r02

M2(F )x0, r12
· · ·Md(F )

x0,
rd−1

2
.

(4.1.3)

We note that Kx = K0
x ·Kx,0+, KM = KM0 ·KM,0+, the groups KM and KM,0+ do not depend on

the point x ∈ Ax0 , and all the above groups are the same as the groups introduced in Sections 3.6
and 3.7 attached to the Heisenberg–Weil data

HW(Σ)x =

{((
G0 ( G1 ( . . . ( Gd

)
, (r0, . . . , rd−1), (x, {ι}),K0

x, (φ0, . . . , φd−1)
)

(rd−1 = rd),((
G0 ( G1 ( . . . ( Gd ⊆ Gd+1 := Gd

)
, (r0, . . . , rd), (x, {ι}),K0

x, (φ0, . . . , φd)
)

(rd−1 < rd),

and HW(Σ)M ={((
M0 ⊆M1 ⊆ . . . ⊆Md

)
, (r0, . . . , rd−1), (x, {ι}),KM0 , (φ0|M0(F ), . . . , φd−1|Md−1(F ))

)
(rd−1 = rd),((

M0 ⊆ . . . ⊆Md ⊆Md+1 := Md
)
, (r0, . . . , rd), (x, {ι}),KM0 , (φ0|M0(F ), . . . , φd|Md(F ))

)
(rd−1 < rd)

i.e., our notation in this section is consistent with the notation in the Section 3.
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Remark 4.1.4. Since we follow the conventions of [Yu01] for the definition of a G-datum, we have
to distinguish the above two cases when extracting the Heisenberg–Weil datum HW(Σ)x0 from Σ,
which will be used below to construct the representations ρx0 . On the other hand, if we followed the
conventions of [Fin21b, Fin21a] to define the G-datum, then the Heisenberg–Weil datum HW(Σ)x0
would be obtained by simply removing the depth-zero piece from the G-datum Σ, see [Fin21a,
Remark 2.4].

From now on suppose that the diagram {ι} is −→r /2-generic relative to x, so that Σx is a G-datum.
We denote by κnt

x and κnt
M the representations of Kx and KM defined from the Heisenberg–Weil

data HW(Σ)x and HW(Σ)M via the non-twisted Heisenberg–Weil construction as in Notation 3.6.3,
respectively. In other words, κnt

x , resp., κnt
M is the irreducible smooth representation of Kx, resp.,

KM defined via the theory of Heisenberg–Weil representations as in [KY17, Section 7], [Yu01,
Section 4], and allowing a more general coefficient field C using the arguments in [Fin22, Section 2].

We define the irreducible representations κx of Kx and κM of KM by κnt
x ⊗ ε

−→
G
x and κM = κnt

M ⊗(
ε
−→
G
x |KM

)
, where ε

−→
G
x denotes the quadratic character of [FKS23, Section 4.1]. More precisely, ε

−→
G
x

is the character of Kx introduced in Notation 3.6.4 constructed from the Heisenberg–Weil datum
HW(Σ)x. In other words, the representation κx is the representation defined from the Heisenberg–
Weil datum HW(Σ)x by the twisted Heisenberg–Weil construction as in Notation 3.6.3.

Remark 4.1.5. Let ε
−→
M
x denote the character of KM introduced in Notation 3.6.4 constructed from

the Heisenberg–Weil datum HW(Σ)M which is based on [FKS23, Section 4.1]. Then the restriction

of the character ε
−→
G
x to KM does not necessarily agree with the character ε

−→
M
x , see Remark A.2.6

below for an example. Thus, the representation κM does not necessarily agree with the repre-
sentation constructed from the Heisenberg–Weil datum HW(Σ)M via the twisted Heisenberg–Weil
construction.

Lemma 4.1.6. The representations κnt
M and κM do not depend on the point x ∈ Ax0 such that the

diagram {ι} is −→r /2-generic relative to x, and we have κnt
x |KM = κnt

M and κx|KM = κM for all such
x.

Proof. The claim that κnt
M is independent of the points follows from the construction of κnt

M . More-

over, according to Corollary 3.5.2, we have ε
−→
G
x |KM = ε

−→
G
y |KM for all x, y ∈ Ax0 such that {ι} is

−→r /2-generic relative to x and y. Thus, the representation κM is also independent of the choice of
x. The remaining claims follow from the definitions.

Now, we define the irreducible representations ρnt
x and ρx of Kx and ρM of KM by

ρnt
x = inf

(
ρ0
x

)
⊗ κnt

x , ρx = inf
(
ρ0
x

)
⊗ κx, and ρM = inf (ρM0)⊗ κM ,

where inf
(
ρ0
x

)
denotes the inflation of the representation ρ0

x to the group Kx via the surjection

Kx = K0
x ·Kx,0+ −→ K0

x ·Kx,0+/Kx,0+ ' K0
x/
(
K0
x ∩Kx,0+

)
= K0

x/G
0(F )x,0+,

and inf (ρM0) denotes the inflation of ρM0 to KM via the surjection

KM = KM0 ·KM,0+ −→ KM0 ·KM,0+/KM,0+ ' KM0/ (KM0 ∩KM,0+) ' KM0/M0(F )x,0+.
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Remark 4.1.7. In [KY17], Kim and Yu attached to a C-valued G-datum Σx the non-twisted
representation ρnt

x . However, some of the results of [KY17] rely on [Yu01, Proposition 14.1] and
[Yu01, Theorem 14.2], which were pointed out in [Fin21a] to be false in general. On the other hand,
according to [FKS23, Corollary 4.1.11, Corollary 4.1.12], the twisted representation ρx satisfies the
analogues of these propositions. Thus, we can apply the results of [KY17], replacing their non-
twisted construction with our twisted construction.
Moreover, while Kim and Yu ([KY17, §2.3]) assume that p is not a torsion prime for the dual root
datum of G, they only use this assumption for [KY17, 5.3 Lemma], which remains true without
this assumption (see Lemma 3.7.1).

Remark 4.1.8. Let x ∈ Ax0 such that the diagram {ι} is −→r /2-generic relative to x. For 0 ≤ i ≤ d,
let Ki

x denote the compact, open subgroup of Gi(F ) defined as in Section 3.6 from the Heisenberg–
Weil datum HW(Σ)x. Since the character φi is trivial on the open subgroup Gi(F )x,ri+ of Ki

x, the
image of the restriction of φi to the compact subgroup Ki

x is contained in the group µ(C) of roots
of unity in C×. Thus, we can take a character φ′i : G

i(F ) −→ µ(C) that agrees with φi on Ki
x. In

particular, if C admits a nontrivial involution, we obtain that the characters φ′i are unitary (with re-
spect to this involution) for all 0 ≤ i ≤ d. The construction of ρx implies that the representations ρx
of Kx constructed from Σx and from the G-datum

(
(
−→
G,M0),−→r , (x, {ι}), (KM0 , ρM0), (φ′0, . . . , φ

′
d)
)

agree. Hence, by replacing φi with φ′i if necessary, we may and do assume that the characters φi
are unitary (but this only matters for questions of unitarity and preservation of the anti-involution
introduced in [AFMO, Section 3.11], so a reader not interested in this property can ignore this
step).

For 0 ≤ i ≤ d and x ∈ Ax0 such that the diagram {ι} is −→r /2-generic relative to x, we write
φ̂i,x for the character of K0

x · Gi(F )x,0 · G(F )x,ri/2+ defined as in [Yu01, Section 4] that extends

φi|K0
x ·Gi(F )x,0. We write θx =

∏d
i=0 φ̂i,x|Kx,+ , analogous to Notation 3.6.7. Then we have the

following basic observation that we will use later and which is [Yu01, Proposition 4.4] in the case
of supercuspidal representations.

Lemma 4.1.9 (cf. [Yu01, Proposition 4.4]). The restriction of the representation ρx to the group
Kx,+ is θx-isotypic.

Proof. This follows from Lemma 3.6.8, and the fact that the representation inf
(
ρ0
x

)
is trivial on

Kx,+

If NG0(M0)(F )[x0]M0
normalizes the group KM0 , e.g., if KM0 = M0(F )x0 or M0(F )x0,0, then the ob-

jects G0, G, M0, M , x0, KM0 , KM , ρM0 , ρM and the families
{

(K0
x,K

0
x,+, ρ

0
x)
}

and {(Kx,Kx,+, ρx)}
for appropriate x ∈ Ax0 are an example for the objects with the same names in [AFMO, Section
4.1] and we will show in Section 4.3 that these objects satisfy all the desired axioms of [AFMO,
Section 4] for the choice of

N(ρM0)♥[x0]M0
= N(ρM0)[x0]M0

:= NG0(F )(ρM0) ∩NG0(M0)(F )[x0]M0

(see [AFMO, Notation 3.3.1]). Moreover, the collection of objects G, M , x0, KM , ρM , Kx, Kx,+,
ρx and the collection of objects G0, M0, x0, KM0 , ρM0 , K0

x, K0
x,+, ρ0

x are also two examples for

objects to which [AFMO, Section 3] can be applied for the group N(ρM )♥[x0]M
= N(ρM0)[x0]M0

in
both cases. We will show in Section 4.3 that both collections of objects satisfy all the axioms of
[AFMO, Section 3].
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4.2 Affine hyperplanes

In order to apply Sections 3 and 4 of [AFMO] to the objects introduced in the previous subsection,
Section 4.1, we introduce an appropriate set of affine hyperplanes as in [AFMO, Section 3.2] as
follows. Let 0 ≤ i ≤ d. We fix a maximal split torus Si of M i such that x0 ∈ A(Gi, Si, F ). For
a ∈ Φaff(Gi, Si) r Φaff(M i, Si), we define the affine hyperplane Ha,ri−1/2 in A(Gi, Si, F ) by

H
a,
ri−1

2
=
{
x ∈ A(Gi, Si, F )

∣∣∣ a(x) =
ri−1

2

}
.

Since a 6∈ Φaff(M i, Si), the intersection Ax0 ∩ Ha,ri−1/2 is an affine hyperplane in Ax0 = x0 +
(X∗(AM )⊗Z R) = x0 + (X∗(AM0)⊗Z R). We define the locally finite set Hi

Si
of affine hyperplanes

in Ax0 by

HiSi =
{
Ax0 ∩Ha,

ri−1
2

∣∣∣ a ∈ Φaff(Gi, Si) r Φaff(M i, Si)
}
.

Note that H0
S0 is the set of affine hyperplanes that we introduced in the depth-zero setting in

[AFMO, Section 5.2] for the group G0 with Levi subgroup M0.

Lemma 4.2.1. The set of affine functionals
{
a|Ax0 | a ∈ Φaff(Gi, Si) r Φaff(M i, Si)

}
on Ax0 and

the set Hi
Si

do not depend on the choice of a maximal split torus Si of M i.

Proof. The proof is the same as the proof of [AFMO, Lemma 5.2.1] replacing G, M , S and Ha in
that proof by Gi, M i, Si and H

a,
ri−1

2
, and replacing the condition “= 0” by “= ri−1

2 ”.

We define the locally finite set H of affine hyperplanes in Ax0 by

H =
⋃

0≤i≤d
HiSi .

The definition of H implies that for x ∈ Ax0 , the diagram {ι} is −→r /2-generic relative to x if and
only if x is not contained in any affine hyperplane H ∈ H, that is, x ∈ Agen = Ax0 r

(⋃
H∈HH

)
.

In particular, we have x0 ∈ Agen.

For x, y ∈ Agen, as in [AFMO, §3.2], we define the subset Hx,y of H by

Hx,y = {H ∈ H | x and y are on opposite sides of H}

and we write d(x, y) = #Hx,y, which is finite because H is locally finite.

Lemma 4.2.2. The action of NG0(M0)(F )[x0]M0
on Ax0 preserves the set H.

Proof. The proof is analogous to the proof of [AFMO, Lemma 5.2.2].

4.3 Hecke algebra isomorphisms for the types constructed by Kim–Yu

From now on, we assume that the group KM0 is normalized by NG0(M0)(F )[x0]M0
in order to apply

the results in [AFMO, Section 5.3], especially [AFMO, Proposition 5.3.2], which states that the
support of the Hecke algebra attached to (K0

x, ρ
0
x) is given by K0

x ·N(ρM0)[x0]M0
·K0

x. For instance,

if we choose KM0 = M0(F )x0 or M0(F )x0,0, then this assumption is satisfied. If C = C, then the
case of KM0 = M0(F )x0 corresponds to types for single Bernstein blocks.
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In this subsection, we will prove Theorem 4.3.11 that states that there exists a support-preserving
algebra isomorphism H(G0(F ), ρ0

x0)
∼−→ H(G(F ), ρx0) by verifying all the required axioms from

Sections 3 and 4 of [AFMO] that allow us to apply [AFMO, Theorem 4.4.8 and Corollary 4.5.2].
We recall that we have constructed in Section 4.1 the two families

K0 =
{

(K0
x,K

0
x,+, (ρ

0
x, Vρ0x))

}
x∈Agen

and K = {(Kx,Kx,+, (ρx, Vρx))}x∈Agen

of quasi-G0-cover-candidates and quasi-G-cover-candidates, respectively, as defined at the beginning
of Section 3.4 of [AFMO].

Proposition 4.3.1. The family K0 satisfies Axioms 3.4.1 and 3.4.3 of [AFMO] for the group
N(ρM0)♥[x0]M0

= N(ρM0)[x0]M0
.

Proof. Since the set of affine hyperplanes H0
S0 ⊂ Ax0 used to define the set of generic points in

the depth-zero setting in [AFMO, Section 5.2] is a subset of H, our set Agen of generic points
is contained in the set of generic points used in [AFMO, Section 5.2]. Hence, the properties of
Axioms 3.4.1 and 3.4.3 of [AFMO] other than Axiom 3.4.1 (2) follow from [AFMO, Lemma 5.3.1]
and [AFMO, Proposition 5.3.2]. Axiom 3.4.1 (2) follows from Lemma 4.2.2.

We will now prove that the family K also satisfies Axiom 3.4.1 of [AFMO].

Lemma 4.3.2.

(1) For every x ∈ Agen, we have

(a) Knx = nKxn
−1 and Knx,+ = nKx,+n

−1 for n ∈ N(ρM0)[x0]M0
,

(b) the pair (Kx, ρx) is a quasi-G-cover of (KM , ρM ),

(c) Kx = KM ·Kx,+,

(d) Kx,+ = (Kx,+ ∩ U(F )) · (Kx,+ ∩M(F )) ·
(
Kx,+ ∩ U(F )

)
for all U ∈ U(M).

Moreover, the group Kx,+ ∩M(F ) is independent of the point x ∈ Agen.

(2) For x, y, z ∈ Agen such that d(x, y) + d(y, z) = d(x, z), there exists U ∈ U(M) such that

Kx ∩ U(F ) ⊆ Ky ∩ U(F ) ⊆ Kz ∩ U(F ) and Kz ∩ U(F ) ⊆ Ky ∩ U(F ) ⊆ Kx ∩ U(F ).

Thus, the family K satisfies Axiom 3.4.1 of [AFMO] for the group N(ρM )♥[x0]M
= N(ρM0)[x0]M0

.

Proof. The first claim follows from the definitions, Lemma 4.1.6, and [KY17, 4.3 Proposition,
Theorem 7.5]. A proof for the second claim can be obtained by making several replacements in the
proof of the second claim of Lemma 5.3.1 of [AFMO]. Specifically, replace the symbol G by Gi,
“> 0” and “< 0” by “> ri−1

2 ” and “< ri−1

2 ”, and Ha by H
a,
ri−1

2
for some 0 ≤ i ≤ d such that there

exists a ∈ Φaff(Gi, Si) whose gradient Da ∈ Φ(Gi, Si) occurs in the adjoint representation of Si on
the Lie algebra of U and a(x) > ri−1

2 and a(y) < ri−1

2 . The first two properties of Axiom 3.4.1 of
[AFMO] follow from Lemma 4.1.9 and Lemma 4.2.2, the remaining properties from the first two
claims of this lemma.
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Next, we will prove that the quadruple (KM0 , ρM0 ,KM , ρM ) together with the group N(ρM0)[x0]M0

satisfy Axiom 4.1.2 of [AFMO]. To do so, we will define an explicit extension κ̃M of κM to the
group

NG0(M0)(F )[x0]M0
·KM ⊇ N(ρM0)[x0]M0

·KM ,

which might be of independent interest.

Let κ̃nt
M denote the extension of κnt

M to the group NG0(M0)(F )[x0]M0
· KM defined in Proposi-

tion 3.7.4. For the reader who prefers to skip the details of Section 3 on a first reading, here is
a description of κ̃nt

M : The conjugation action of NG0(M0)(F )[x0]M0
on M(F ) induces symplectic

automorphisms on the symplectic spaces appearing in Yu’s construction of κnt
M . Hence, we ob-

tain a group homomorphism from NG0(M0)(F )[x0]M0
to the product of the associated symplectic

groups. Then we can define the action of NG0(M0)(F )[x0]M0
by composing this homomorphism

with the tensor product of the Weil representations, and take the tensor product of the resulting
representation with

∏
0≤i≤d φi|NG0 (M0)(F )[x0]M0

.

Definition 4.3.3. We define the representation κ̃M of NG0(M0)(F )[x0]M0
·KM by

κ̃M = κ̃nt
M ⊗ ε̃

−→
G
x0 ,

where ε̃
−→
G
x0 denotes the extension of ε

−→
G
x0 |KM to NG0(M0)(F )[x0]M0

·KM defined by ε̃
−→
G
x0 |KM,0+ = 1 and

ε̃
−→
G
x0 |NG0 (M0)(F )[x0]M0

=
d∏
i=1

ε̃G
i/Gi−1

x0 |NG0 (M0)(F )[x0]M0
,

where ε̃
Gi/Gi−1

x0 denotes the character introduced in Definition 2.7.1.

Proposition 4.3.4. The restriction of the representation κ̃M to KM agrees with κM .

Thus, the quadruple (KM0 , ρM0 ,KM , ρM ) together with the group N(ρM0)♥[x0]M0
:= N(ρM0)[x0]M0

satisfy Axiom 4.1.2 of [AFMO].
Moreover, if C admits a nontrivial involution, then κ̃M is unitary.

Proof. The first claim follows from the definitions of κM and κ̃M and Theorem 2.7.2. Then the
claim about Axiom 4.1.2 of [AFMO] being satisfied follows from the definitions, Lemma 3.7.2, and
NG0(M0)(F )[x0]M0

⊇ N(ρM0)[x0]M0
⊇ KM0 .

Suppose that C admits a nontrivial involution. According to Remark 4.1.8, we arranged for the
characters φi to be unitary for all 0 ≤ i ≤ d. Then the claim follows from Lemma 3.7.5, the

definition of κ̃M , and the fact that the characters ε̃
Gi/Gi−1

x0 are unitary for 1 ≤ i ≤ d.

Proposition 4.3.5. For each x ∈ Agen, we have

IG(F )(ρx) = Kx · IG0(F )(ρ
0
x) ·Kx = Kx ·N(ρM0)[x0]M0

·Kx.

Thus, the families K0 and K satisfy Axiom 4.2.1 of [AFMO], and the family K satisfies Axiom 3.4.3
of [AFMO] for N(ρM )♥[x0]M

= N(ρM0)[x0]M0
.
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Proof. The first equality follows from [KY17, Theorem 8.1] and Remark 4.1.7, which points out
that the results of Kim and Yu apply to the twisted construction that we use in this section, and
not to the non-twisted one. The second equality follows from [AFMO, Proposition 5.3.2]. Using
the definition of Kx and ρx in this section, we see that Axiom 4.2.1 of [AFMO] is satisfied.

Now we introduce some groups that will be used to show that the families K0 and K satisfy
Axiom 4.3.1 of [AFMO].

Notation 4.3.6. Let x, y ∈ Agen with d(x, y) = 1. We denote by Hx,y ∈ H the unique hyperplane
that satisfies Hx,y = {Hx,y} and define the compact, open subgroups K0

x,y of G0(F ) and Kx,y;0+

of G(F ) by K0
x,y = K0

h and Kx,y;0+ = Kh,0+, where h ∈ Hx,y is the unique point for which
h = x + t · (y − x) for some 0 < t < 1, and K0

h and Kh,0+ were defined in (4.1.2) and (4.1.3). We
also define the irreducible smooth representation κx,y of Kx,y := K0

x,y ·Kx,y;0+ = Kh by κx,y = κh,
where κh denotes the representation obtained from the Heisenberg–Weil datum

HW(Σ)h =

{((
G0 ( G1 ( . . . ( Gd

)
, (r0, . . . , rd−1), (h, {ι}),K0

h, (φ0, . . . , φd−1)
)

(rd−1 = rd),((
G0 ( G1 ( . . . ( Gd ⊆ Gd+1 := Gd

)
, (r0, . . . , rd), (h, {ι}),K0

h, (φ0, . . . , φd)
)

(rd−1 < rd)

via the twisted Heisenberg–Weil construction, see Notation 3.6.3.

Lemma 4.3.7. Let x, y ∈ Agen such that d(x, y) = 1. Then the triple (K0
x,y,Kx,y;0+, κx,y) in

Notation 4.3.6 satisfies the following properties:

(1) K0
x,y contains K0

x and K0
y .

(2) Kx,y;0+ is normalized by the group K0
x,y, and we have

Kx,0+ ⊂
(
G0(F ) ∩Kx,0+

)
·Kx,y;0+ and Ky,0+ ⊂

(
G0(F ) ∩Ky,0+

)
·Kx,y;0+.

(3) The group G0(F ) ∩Kx,y;0+ is contained in the kernels of ρ0
x and ρ0

y.

(4) The restriction of κx,y to Kx,y;0+ is irreducible.

(5) We have isomorphisms

κx,y|K0
x·Kx,y;0+

∼−→ ind
K0
x·Kx,y;0+

Kx
(κx) and κx,y|K0

y ·Kx,y;0+
∼−→ ind

K0
y ·Kx,y;0+

Ky
(κy).

Thus, the families K0 and K satisfy Axiom 4.3.1 of [AFMO].

Proof. Since d(x, y) = 1, the definition of H implies that we have

Gi(F )
h,
ri−1

2
+
⊆ Gi(F )

z,
ri−1

2
+
⊆ Gi(F )

z,
ri−1

2
⊆ Gi(F )

h,
ri−1

2
(4.3.7a)

for all 0 ≤ i ≤ d and z ∈ {x, y}, where h ∈ Hx,y is the unique point for which h = x + t · (y − x)
for some 0 < t < 1, as in Notation 4.3.6. The first three claims of the lemma follow from (4.3.7a).
Claim (4) follows from Lemma 3.6.5. Claim (5) follows from (4.3.7a) and Corollary 3.6.14.
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Recall from Definition 3.5.6 of [AFMO] that a hyperplane H ∈ H is called K-relevant, resp., K0-
relevant if there exists x, y ∈ Agen such that Hx,y = {H} and Θx|y ◦ Θy|x /∈ C · idind

G(F )
Kx

(ρx)
, resp.,

Θ0
x|y ◦ Θ0

y|x /∈ C · id
ind

G0(F )

K0
x

(ρ0x)
, where the intertwining operators Θx|y, Θy|x, Θ0

x|y, and Θ0
y|x are

defined in [AFMO, §§3.5,4.3]. Following Definition 3.5.6, we denote by HK-rel, resp., HK0-rel the set
of hyperplanes that are K-relevant, resp., K0-relevant.

Lemma 4.3.8. We have HK-rel = HK0-rel ⊂ H0
S0, where S0 is any maximal split torus of M0 such

that x0 ∈ A(G0, S0, F ).

Proof. The equality follows from Corollary 4.3.7 of [AFMO], whose assumptions are satisfied by
Lemma 4.3.2, Proposition 4.3.4, Proposition 4.3.5, and Lemma 4.3.7. We will prove the inclusion.
Suppose that H ∈ H r H0

S0 . Then, for all x, y ∈ Agen with Hx,y = {H}, the definitions of
the family K0 and the intertwining operator Θ0

y|x imply that we have (K0
x, ρ

0
x) = (K0

y , ρ
0
y) and

Θ0
y|x = id

ind
G0(F )

K0
x

(ρ0x)
. Hence, the affine hyperplane H is not K0-relevant, that is, H 6∈ HK0-rel.

We set N(ρM0)♥[x0]M0
= N(ρM0)[x0]M0

and recall from [AFMO, Definition 3.4.15] that

W (ρM0)♥[x0]M0
:= N(ρM0)♥[x0]M0

/
(
N(ρM0)♥[x0]M0

∩KM0

)
= N(ρM0)[x0]M0

/KM0

and from [AFMO, Section 3.7] that WK0-rel := 〈sH | H ∈ HK0-rel〉 with set of simple reflections
SK0-rel, see [AFMO, Notation 3.8.1]. Here, for a hyperplane H ∈ H, we let sH denote the corre-
sponding reflection. Similarly, given a reflection s of Ax0 , we let Hs denote the hyperplane fixed
by s.

Proposition 4.3.9. The group W (ρM0)♥[x0]M0
satisfies Axiom 3.7.1 of [AFMO] with a normal

subgroup W (ρM0)aff of W (ρM0)♥[x0]M0
, and the family K0 satisfies Axiom 3.8.2 of [AFMO] with the

group K ′x,s = K0
x,sx for each s ∈ SK0-rel and x ∈ Agen such that Hx,sx = {Hs}.

Proof. Since the set of affine hyperplanes H0
S0 ⊂ Ax0 used to define the set of generic points in

the depth-zero setting in [AFMO, Section 5.2] is a subset of H, our set Agen of generic points is
contained in the set of generic points used in [AFMO, Section 5.2]. Therefore, the proposition
follows from [AFMO, Proposition 5.3.5] and Lemma 4.3.8.

While we are now already in position to conclude the main result of this subsection, Theorem
4.3.11, let us first note a corollary of Proposition 4.3.9 based on [AFMO, Section 4.4].

Corollary 4.3.10. The family K satisfies Axiom 3.8.2 of [AFMO] with N(ρM )♥[x0]M
= N(ρM0)[x0]M0

and the group K ′x,s = Kx,sx, see Notation 4.3.6, for each s ∈ SK0-rel and x ∈ Agen such that
Hx,sx = {Hs}.

Proof. The corollary follows from [AFMO, Lemma 4.4.3]. Note that we can apply the lemma
because the family K0 satisfies Axioms 3.4.1 and 3.4.3 of [AFMO] by Proposition 4.3.1, the family
K satisfies Axiom 3.4.1 of [AFMO] by Lemma 4.3.2, Axioms 4.1.2, 4.2.1, and 4.3.1 of [AFMO] are
satisfied by Proposition 4.3.4, Proposition 4.3.5, and Lemma 4.3.7, and Axioms 3.7.1 and 3.8.2 of
[AFMO] for K0 hold by Proposition 4.3.9.
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Theorem 4.3.11. There exists a support-preserving algebra isomorphism

I : H(G0(F ), ρ0
x0)

∼−→ H(G(F ), ρx0).

If C admits a nontrivial involution, then there exists such an isomorphism that preserves the cor-
responding anti-involutions on both sides defined in [AFMO, Section 3.11].

Proof. The statement follows from [AFMO, Theorem 4.4.8 and Corollary 4.5.2], whose assump-
tions are satisfied by Proposition 4.3.1, Lemma 4.3.2, Proposition 4.3.9, Proposition 4.3.4, Propo-
sition 4.3.5, and Lemma 4.3.7.

The isomorphism I in the above theorem is described more explicitly in [AFMO, Theorem 4.4.11].

4.4 The structure of Hecke algebras attached to the types constructed by Kim–Yu

Since we have shown that all the axioms of Sections 3 and 4 of [AFMO] are satisfied in the setting
of the present section, we also obtain that the Hecke algebras attached to (K0

x, ρ
0
x) and (Kx0 , ρx0)

are isomorphic to a semi-direct product of a twisted group algebra with an affine Weyl group.

Theorem 4.4.1. We have isomorphisms of C-algebras

H(G(F ), ρx0) ' H(G0(F ), ρ0
x0) ' C[Ω(ρM0), µT

0
] nHC(W (ρM0)aff , q),

where

� Ω(ρM0) denotes the subgroup of length-zero elements of W (ρM0)♥[x0]M0
defined in [AFMO,

Notation 3.7.5],

� µT
0

denotes the restriction to Ω(ρM0) × Ω(ρM0) of the 2-cocycle introduced in [AFMO, No-
tation 3.6.1] for a choice of a family T 0 satisfying the properties of [AFMO, Choice 3.10.3]
for the pair (KM0 , ρM0) and the collections of operators {Φ0

w} and {Φ0
t } defined on page 69

of [AFMO],

� q denotes the parameter function s 7→ qs appearing in [AFMO, Choice 3.10.3(3)],

� C[Ω(ρM0), µT
0
] denotes the twisted group algebra recalled in Notation 3.10.8(b) of [AFMO],

and

� HC(W (ρM0)aff , q) denotes the affine Hecke algebra with C-coefficients associated to the affine
Weyl group W (ρM0)aff with set of generators SK0-rel and the parameter function q recalled in
Notation 3.10.8(a) of [AFMO].

If C admits a nontrivial involution, then we can choose T 0 as in [AFMO, Choice 3.11.5], and
the above isomorphisms can be chosen to preserve the anti-involutions on each algebra defined in
[AFMO, Section 3.11].

Proof. The statement follows from [AFMO, Theorem 3.10.10 and Proposition 3.11.7], whose as-
sumptions are satisfied by Proposition 4.3.1, Lemma 4.3.2, Proposition 4.3.5, Proposition 4.3.9,
and Corollary 4.3.10.
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4.5 Application: Reduction to depth zero

In this subsection we assume that C = C. (We only do so because the literature on types currently
makes this assumption.) By [KY17, Theorem 7.5] and [Fin21a] the pair (Kx0 , ρx0) is an S(Σ)-type
for a finite subset S(Σ) of the inertial equivalence classes I(G) for G and the pair (K0

x0 , ρ
0
x0) is an

S0(Σ)-type for a finite subset S0(Σ) of the inertial equivalence classes I(G0) for G0. We denote
by RepS(Σ)(G(F )) and RepS0(Σ)(G0(F )) the corresponding union of Bernstein blocks that were
recalled in [AFMO, Section 4.6].

Corollary 4.5.1. We have an equivalence of categories RepS(Σ)(G(F ))
∼−→ RepS0(Σ)(G0(F )).

Proof. Apply [AFMO, Theorem 4.6.3] to the pairs (K0
x0 , ρ

0
x0) and (Kx0 , ρx0).

Combining Corollary 4.5.1 with the exhaustion result in [Fin21b], we obtain that if p is large
enough, every Bernstein block is equivalent to a depth-zero block:

Theorem 4.5.2. We assume that p does not divide the order of the absolute Weyl group of G.
Then for every inertial equivalence class s ∈ I(G), there exists a tamely ramified twisted Levi
subgroup G0 of G and s0 ∈ I(G0) such that the full subcategory Reps0(G0(F )) consists of depth-
zero representations, and we have an equivalence of categories Reps(G(F ))

∼−→ Reps0(G0(F )).

Proof. According to [Fin21b, Theorem 7.12] and the assumptions, for any s ∈ I(G), there exists a
G-datum Σ such that {s} = S(Σ). Then the theorem follows from Corollary 4.5.1.

Remark 4.5.3. According to [AFMO, Theorem 4.6.4] and Proposition 4.3.4, when restricted to
irreducible objects, the equivalences of categories in Corollary 4.5.1 and Theorem 4.5.2 preserve
temperedness, and preserve the Plancherel measure on the tempered dual up to an explicit constant
factor.

A Appendix

A.1 Decomposition of a symplectic space over Fp: generalization of an argument of
Yu

In this appendix, we generalize the arguments in [Yu01, Section 12 and 13] to prove Lemma 3.3.3.
We use the same notation as in Section 3.3, i.e., G′ denotes a twisted Levi subgroup of a connected
reductive group G defined over F that splits over a tamely ramified field extension of F , r is
a positive real number, x, y ∈ B(G′, F ), and we write V y

x = (Jx ∩ Jy) · Jy,+/Jy,+ and V y
x,+ =

(Jx,+ ∩ Jy) · Jy,+/Jy,+. We explain another description of the spaces V y
x and V y

x,+. Let T be a
maximal torus of G′ such that the splitting field E of T is tamely ramified over F and such that
x, y ∈ A(G′, T, E). According to the discussion in the beginning of [Yu01, Section 2] and the fact
that any two points of B(G′, F ) are contained in an apartment of B(G′, F ), such a torus exists. We
define 

Φ1 = {α ∈ Φ(G,T ) | α(y − x) < 0},
Φ2 = {α ∈ Φ(G,T ) | α(y − x) = 0} ∪ {0},
Φ3 = {α ∈ Φ(G,T ) | α(y − x) > 0}.
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For i = 1, 2, 3, we define Φ′i = Φi ∩ (Φ(G′, T ) ∪ {0}) and Φ′′i = Φi r Φ′i. We define the function

fi : Φ(G,T ) ∪ {0} −→ R̃ by fi(α) =


r (α ∈ Φ′i),
r
2 (α ∈ Φ′′i ),

∞ (otherwise).

As explained in [Yu01, Section 13], the functions f1, f2, and f3 are concave. For i ∈ {1, 2, 3}, we
denote the subgroup G(F )y,fi by Jy,i, and the image of Jy,i in Jy/Jy,+ by Vi. According to (the
same arguments used to prove) [Yu01, Lemma 13.6] (applied to the more general case where x and
y are not necessarily in the same G′(F )-orbit), the spaces V1 and V3 are totally isotropic subspaces
of Jy/Jy,+ and orthogonal to V2 with respect to 〈 , 〉y, and we have

Jy/Jy,+ = V1 ⊕ V2 ⊕ V3,

V y
x = V1 ⊕ V2,

V y
x,+ = V1.

For a subspace W of Jy/Jy,+, let W⊥ denote the orthogonal complement of W in Jy/Jy,+ with
respect to 〈 , 〉y. Then we have (

V y
x,+

)⊥
= V ⊥1 ⊂ V1 ⊕ V2 = V y

x . (A.1.1a)

On the other hand, we claim that

dimFp(V1) + dimFp(V1 ⊕ V2) = dimFp(Jy/Jy,+). (A.1.1b)

This can be proven by the arguments in the proof of [Yu01, Lemma 12.8]. More precisely, since
Jy/Jy,+ = V1 ⊕ V2 ⊕ V3, it suffices to show that dimFp(V1) = dimFp(V3). Since V1 ⊕ V2 ⊕ V3

is non-degenerate and V ⊥2 ⊃ V1 ⊕ V3, we obtain that V2 is non-degenerate and V ⊥2 = V1 ⊕ V3.
Since V1 and V3 are totally isotropic subspaces of the non-degenerate space V ⊥2 = V1 ⊕ V3, we
have dimFp(V1),dimFp(V3) ≤ 1

2 dimFp(V1 ⊕ V3). Thus, we obtain that dimFp(V1) = dimFp(V3) =
1
2 dimFp(V1 ⊕ V3).

Equation (A.1.1b) implies that dimFp(V
⊥

1 ) = dimFp(V1 ⊕ V2). Combining this with (A.1.1a), we
obtain V ⊥1 = V1 ⊕ V2 and see that Lemma 3.3.3 holds true.

A.2 The quadratic twist is necessary

In this appendix, we give an example to show that our main theorem, Theorem 4.3.11, would not be
true in general if we replaced ρx0 by ρnt

x0 , i.e., if we omitted the quadratic twist in the construction
of ρx0 . Assume ` = 0 and recall that p 6= 2. Let G = Sp4 over F corresponding to the symplectic
pairing given by

J =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 .
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Let T be the maximal torus of G defined as

T =



t1 0 0 0
0 t2 0 0

0 0 t−1
2 0

0 0 0 t−1
1


 .

Let o ∈ A(G,T, F ) be the point such that G(F )o,0 = Sp4(OF ). We identify A(G,T, F ) with R2

via the bijection R2 ' A(G,T, F ) defined by (x1, x2) 7→ o + x1α
∨
1 + x2α

∨
2 , where α∨1 and α∨2 are

cocharacters of T defined as

α∨1 (t) =


t 0 0 0
0 1 0 0
0 0 1 0
0 0 0 t−1

 and α∨2 (t) =


1 0 0 0
0 t 0 0
0 0 t−1 0
0 0 0 1

 ,

respectively. We define points x0, x
′
0 ∈ A(G,T, F ) = R2 as x0 =

(
−1

4 ,
1
16

)
and x′0 =

(
−1

4 ,
1
4

)
.

We fix a uniformizer πF of F , and let $F be an element of F such that $2
F = πF . We also fix

an element
√

2$F in F such that
√

2$F
2

= 2$F . Let E = F (
√

2$F ). We define an element
X ∈ Lie∗(G)(F ) by

Lie(G)(F ) 3 (Ai,j)
X7−→ π−1

F ·A1,4 +A4,1.

We define a twisted Levi subgroup G0 of G as the centralizer of X in G. Then we have

G0 =


 a 01×2 b

02×1 SL2 02×1

bπ−1
F 01×2 a

 ∣∣∣∣∣∣ a2 − b2π−1
F = 1

 ' U(1)× SL2 .

We also define a Levi subgroup M0 of G0 as

M0 =




a 0 0 b
0 t 0 0
0 0 t−1 0

bπ−1
F 0 0 a


∣∣∣∣∣∣∣∣ a

2 − b2π−1
F = 1

 .

We note that M0 is a maximal torus of G0 and G. Moreover, we have M0 = gTg−1, where

g =


$F√
2$F

0 0 −$F√
2$F

0 1 0 0
0 0 1 0
1√

2$F
0 0 1√

2$F

 .

Let M denote the centralizer of AM0 in G. Then we have

AM0 =




1 0 0 0
0 t 0 0
0 0 t−1 0
0 0 0 1




52



and

M =



a 0 0 b
0 t 0 0
0 0 t−1 0
c 0 0 d


∣∣∣∣∣∣∣∣
(
a b
c d

)
∈ SL2

 .

We define characters α1 and α2 of T as

α1



t1 0 0 0
0 t2 0 0

0 0 t−1
2 0

0 0 0 t−1
1


 = t21 and α2



t1 0 0 0
0 t2 0 0

0 0 t−1
2 0

0 0 0 t−1
1


 = t22.

Then we have

Φ(G,T ) =

{
±α1,±α2,±

α1 + α2

2
,±α1 − α2

2

}
and Φ(M,T ) = {±α1} .

We fix a commutative diagram {ι}

B(G0, F ) // B(G,F )

B(M0, F )

OO

// B(M,F )

OO

of admissible embeddings of buildings and identify a point in B(M0, F ) with its images via the
embeddings {ι}.

Lemma A.2.1. The element X is G-generic of depth −1
2 in the sense of [Fin, Definition 3.5.2]

for the pair G0 ⊂ G, and the points x0 and x′0 are contained in (the image of) B(M0, F ).

Proof. The first claim follows from the same argument as the proof of [Fin21a, Lemma 4.1]. The
proof of [Fin21a, Lemma 4.1] also implies that

x′0 = g
(
0, 1

4

)
∈ A(G, gTg−1, E) = B(M0, E).

Thus, we conclude that x′0 ∈ B(G,F ) ∩ B(M0, E) = B(M0, F ). Then we also have

x0 = x′0 − 3
16α
∨
2 ∈ x′0 + (X∗(AM0)⊗Z R) ⊂ B(M0, F ).

Remark A.2.2. Since x′0 = g
(
0, 1

4

)
and the element g ∈ M(E) acts trivially on X∗(AM0) ⊗Z R,

we also obtain that x0 = g
(
0, 1

16

)
.

We define a character φ of Lie(G0)(F )x0, 12
by φ(Y ) = Ψ(X(Y )). Since X is G-generic of depth −1

2 ,

the character φ is trivial on Lie(G0)(F )x0, 12+. Hence, by using the Moy–Prasad isomorphism

G0(F )x0, 12
/G0(F )x0, 12+ ' Lie(G0)(F )x0, 12

/Lie(G0)(F )x0, 12+,
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we can also regard φ as a character of G0(F )x0, 12
that is trivial on G0(F )x0, 12+. Moreover, the

definition of X implies that the character φ is trivial on the subgroup
 1 01×2 0

02×1 SL2(F ) 02×1

0 01×2 1

 ∩G0(F )x0, 12

of G0(F )x0, 12
. Since U(1) is abelian, we can extend φ to a character of G0(F ) ' (U(1)× SL2) (F )

that is trivial on the subgroup 
 1 01×2 0

02×1 SL2(F ) 02×1

0 01×2 1


of G0(F ). We use the same notation φ for this extension. Since X is G-generic of depth −1

2 , the
character φ is G-generic relative to x0 of depth r := 1

2 in the sense of [Fin, Definition 3.5.2].

Lemma A.2.3. The diagram of embeddings {ι} is
(
0, r2
)

=
(
0, 1

4

)
-generic relative to x0 in the

sense of [KY17, 3.5 Definition].

Proof. We will prove that for all α ∈ Φ(G,T ) r Φ(M,T ) and t ∈ {0, 1/4}, we have Uα(E)x0,t =
Uα(E)x0,t+. Noting that

Uα(E)x0,t = Uα(E)
o,t−

〈
α,−1

4α
∨
1 +

1
16α

∨
2

〉,
it suffices to show that

〈
α,−1

4α
∨
1 + 1

16α
∨
2

〉
6∈ 1

4Z for all α ∈ Φ(G,T ) r Φ(M,T ). This follows from
the calculations 

〈
±α2,−1

4α
∨
1 + 1

16α
∨
2

〉
= ±1

8 ,〈
±α1+α2

2 ,−1
4α
∨
1 + 1

16α
∨
2

〉
= ∓ 3

16 ,〈
±α1−α2

2 ,−1
4α
∨
1 + 1

16α
∨
2

〉
= ∓ 5

16 .

We define a compact, open subgroup K0
x0 of G0(F ) as K0

x0 = G0(F )x0,0, and let ρ0
x0 denote the

trivial representation of K0
x0 . We also write ρM0 for the trivial representation of M0(F )x0,0. Let

(Kx0 , ρ
nt
x0) denote the pair constructed from the G-datum(

(G0 ⊂ G,M0), (1
2 ,

1
2), (x0, {ι}), (M0(F )x0,0, ρM0), (φ, 1)

)
in Section 4.1.

Proposition A.2.4. There is no support-preserving algebra isomorphism

H
(
G0(F ), ρ0

x0

) ∼−→ H
(
G(F ), ρnt

x0

)
.

Proof. Since (Kx0 , ρ
nt
x0) agrees with the pair (Kx0 , ρx0) obtained by replacing the above G-datum

by the following twisted one(
(G0 ⊂ G,M0), (1

2 ,
1
2), (x0, {ι}),

(
M0(F )x0,0, ε

G/G0

x0 |M0(F )x0,0

)
, (φ, 1)

)
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in the construction in Section 4.1, according to Theorem 4.3.11, we have a support-preserving
algebra isomorphism

H(G0(F ), εG/G
0

x0 )
∼−→ H(G(F ), ρnt

x0).

Hence, it suffices to show that there is no support-preserving algebra isomorphism

H(G0(F ), ρ0
x0)

∼−→ H(G0(F ), εG/G
0

x0 ).

Let

s =


1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

 .

Then we have

K0
x0 =




a 0 0 b
0 O×F OF 0
0 pF O×F 0

bπ−1
F 0 0 a


∩G0(F ) and sK0

x0s
−1 =




a 0 0 b
0 O×F pF 0
0 OF O×F 0

bπ−1
F 0 0 a


∩G0(F ).

Hence, we can take a set of representatives for K0
x0/
(
K0
x0 ∩ sK

0
x0s
−1
)

as {u(x) | x ∈ f}, where

u(x) =


1 0 0 0
0 1 x 0
0 0 1 0
0 0 0 1

 .

Suppose that there is a support-preserving algebra isomorphismH(G0(F ), ρ0
x0)

∼−→ H(G0(F ), ε
G/G0

x0 ).

Then we can take ϕ1 ∈ H(G0(F ), ρ0
x0) and ϕ2 ∈ H(G0(F ), ε

G/G0

x0 ), both supported in K0
x0sK

0
x0 ,

such that ϕ1 and ϕ2 satisfy the same quadratic relation. Let ϕ = ϕ1 or ϕ2. We can calculate the
convolution product (ϕ ∗ ϕ)(s) as

(ϕ ∗ ϕ) (s) =
∑

h∈K0
x0
sK0

x0
/K0

x0

ϕ(h) · ϕ(h−1s) =
∑

k∈K0
x0
/(K0

x0
∩sK0

x0
s−1)

ϕ(ks) · ϕ(s−1k−1s)

=
∑
x∈f

ϕ(u(x)s) · ϕ(s−1u(−x)s).

For x ∈ OF , we have

s−1u(−x)s =


1 0 0 0
0 1 0 0
0 x 1 0
0 0 0 1

 .

A standard calculation implies that s−1u(x)−1s ∈ K0
x0sK

0
x0 if and only if x ∈ O×F , and in this case,

we have

s−1u(x)−1s =


1 0 0 0
0 −x−1 −1 0
0 0 −x 0
0 0 0 1

 · s ·


1 0 0 0
0 1 x−1 0
0 0 1 0
0 0 0 1

 = α∨2 (−x−1) · u(x) · s · u(x−1).
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Since ε
G/G0

x0 is a sign character, it is trivial on the pro-p-group {u(x) | x ∈ OF } ' OF . Hence,
according to Lemma A.2.5 below, we have

ϕ2

(
α∨2 (−x−1) · u(x) · s · u(x−1)

)
= εG/G

0

x0

(
α∨2 (−x−1) · u(x)

)
· ϕ2(s) · εG/G0

x0

(
u(x−1)

)
= sgnf(−x−1 mod pF ) · ϕ2(s)

for all x ∈ O×F . Thus, we obtain that

(ϕ ∗ ϕ) (s) =
∑
x∈f×

ϕ(u(x)s) · ϕ(s−1u(−x)s)

=
∑
x∈f×

ϕ(u(x)s) · ϕ
(
α∨2 (−x−1) · u(x) · s · u(x−1)

)
=

{∑
x∈f× ϕ1(s) · ϕ1(s) (ϕ = ϕ1),∑
x∈f× ϕ2(s) · sgnf(−x−1) · ϕ2(s) (ϕ = ϕ2)

=

{
ϕ1(s)2

∑
x∈f× 1 (ϕ = ϕ1),

ϕ2(s)2
∑

x∈f× sgnf(x) (ϕ = ϕ2)

=

{
(qF − 1) · ϕ1(s)2 (ϕ = ϕ1),

0 (ϕ = ϕ2).

In particular, we obtain that

(ϕ1 ∗ ϕ1) (s) 6= 0 and (ϕ2 ∗ ϕ2) (s) = 0,

which contradicts the fact that ϕ1 and ϕ2 satisfy the same quadratic relation.

Now we take care of the last piece of unfinished business from the proof of Proposition A.2.4.

Lemma A.2.5. Let t ∈ O×F . Then we have

εG/G
0

x0 (α∨2 (t)) = sgnf(t mod pF ).

Proof. We define characters β1 and β2 of M0 as

β1




a 0 0 b
0 t 0 0
0 0 t−1 0

bπ−1
F 0 0 a


 = (a+ b$−1

F )2 and β2




a 0 0 b
0 t 0 0
0 0 t−1 0

bπ−1
F 0 0 a


 = t2.

Then we have

Φ(G,M0, E) =

{
±β1,±β2,±

β1 + β2

2
,±β1 − β2

2

}
and Φ(G0,M0, E) = {±β2} .

We define Φ(G/G0,M0) = Φ(G,M0, E) r Φ(G0,M0, E), and we denote by Φ(G/G0,M0)asym,
Φ(G/G0,M0)sym,unr, and Φ(G/G0,M0)sym,ram the set of roots in Φ(G/G0,M0) that are asymmet-
ric, unramified symmetric, and ramified symmetric in the sense of [FKS23, Section 2], respectively.
Then we have

Φ(G/G0,M0)asym =

{
±β1 + β2

2
,±β1 − β2

2

}
,
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Φ(G/G0,M0)sym,unr = ∅,

and
Φ(G/G0,M0)sym,ram = {±β1} .

Since x0 = g
(
0, 1

16

)
and βi(gtg

−1) = αi(t) for i = 1, 2 and for all t ∈ T , we obtain that〈
±β1+β2

2 ,−1
4α
∨
1 + 1

16α
∨
2

〉
=
〈
±β1+β2

2 , g · 1
16α
∨
2

〉
=
〈
±α1+α2

2 , 1
16α
∨
2

〉
= ± 1

16

6∈ 1
4Z.

Similarly, we have
〈
±β1−β2

2 ,−1
4α
∨
1 + 1

8α
∨
2

〉
= ∓ 1

16 6∈
1
4Z. Thus, we conclude that r

2 = 1
4 6∈ ordx0(β)

for all β ∈ Φ(G/G0,M0)asym, where ordx0(β) denotes the set defined in [FKS23, Section 3]. We
also note that we have β1(α∨2 (t)) = 1 and the restriction of any element in Φ(G/G0,M0)asym to the
center Z(G0)/{±1} of G0/{±1} is ramified symmetric. Then according to [FKS23, Definition 3.1,
Theorem 3.4], we have

εG/G
0

x0 (α∨2 (t)) = sgnf(β(α∨2 (t)) mod pF ) = sgnf(t mod pF ),

where β denotes any element in Φ(G/G0,M0)asym.

Remark A.2.6. Since the image of α∨2 is contained in the center of M , we have ε
M/M0

x0 (α∨2 (t)) = 1

for all t ∈ O×F . In particular, we obtain that ε
G/G0

x0 |M0(F )x0,0
6= ε

M/M0

x0 .
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Selected notation

〈 , 〉x, 23
[x]G, 7

AG, 7
Agen, 44
Ax0 , 41

C (coefficient field), 7

d( , ), 44
δxy , 27

ε
−→
G
x , 34

ε
G/G′
x0 , 20

ε
G/G′
x , 9, 10, 20, 30

ε̃
G/G′
x0 , 20

G′ ε̃sym,ram,0, 20

G′ ε̃
sym,ram
s , 11

FαM′ , 11
F±αM′ , 11

G0, 40

H(G(F ), ρ), 7
H, 44
Hx,y, 44
Ha,ri−1/2, 44
HW(Σ)M , 41
HW(Σ)x, 41

id, 8
ιp, 23

jx, 23
Jx, 22
Jx,+, 22
Jyx , 26

κM , 42
κ̃M , 46
κnt
M , 38, 42
κnt
x , 34, 42
κx, 34, 42
κx,y, 47

KM , 38, 41
KM,0+, 38, 41
KM0 , 38, 40
Kx, 22, 33, 41
Kx,+, 33, 41
Kx,0+, 33, 41
Kx,y;0+, 47
K0
x, 32, 41

K0
x,+, 33, 41

K0
x,y, 47

K ′x, 22, 26
K ′x,0+, 22
K ′x,y, 26
Ky
x , 26

` (characteristic of C), 7

M , 40
M0, 40

N(ρM0)[x0]M0
, 43

ωx, 23
ωyx, 26

Φaff(G,S), 7
Φ(G,S), 7
φ′x, 24
φ+
x , 31, 34

Ψ (additive character F → C×), 7
P yx , 26

ρ0
x, 41
ρM , 42
ρM0 , 40
ρnt
x , 42
ρx, 42
r(y − x;OM ′ ; t), 14

SK0-rel, 48
sOM′ , 11
Σ, 41
Σx, 41

θx, 35
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Uα(E), 7
Uα(E)x,r, 7
U(M), 7

(V y
x )#, 26

V y
x , 26
V y
x,+, 26

W (ρM0)aff , 48

ζ, 16
z(y − x;OM ′ ; t), 16
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