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Abstract

Let G denote a connected reductive group over a non-archimedean local field F' of residue
characteristic p, and let C denote an algebraically closed field of characteristic £ # p. If p is
an irreducible smooth C-representation of a compact, open subgroup K of G(F'), then the pair
(K, p) gives rise to a Hecke algebra H(G(F), (K, p)). For a large class of pairs (K, p), we show
that H(G(F), (K, p)) is a semi-direct product of an affine Hecke algebra with explicit parameters
with a twisted group algebra, and that it is isomorphic to H(G°(F), (K°, p°)) for some reductive
subgroup G° C G with compact, open subgroup K° and depth-zero representation p° of K°.

The class of pairs that we consider includes all depth-zero types, and we recover as a special
case of our results the depth-zero Hecke algebra description of Morris. In a second paper, we
will show that our class also contains all of the types constructed by Kim and Yu, and hence
we obtain as a corollary that arbitrary Bernstein blocks are equivalent to depth-zero Bernstein
blocks under minor tameness assumptions.

The pairs to which our results apply are described in an axiomatic way so that the results
can be applied to other constructions of types by only verifying that the relevant axioms are
satisfied. The Hecke algebra isomorphisms are given in an explicit manner and are support
preserving.
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1 Introduction

The category of all smooth complex representations of a p-adic group G decomposes as a product of
indecomposable, full subcategories, called Bernstein blocks, each of which is equivalent to modules
over a Hecke algebra under minor tameness assumptions. Therefore knowing the explicit structure
of these Hecke algebras and their modules yields an understanding of the category of smooth
representations. The famous example of the Iwahori—-Hecke algebra has already been described in
the 1960s, and the structure of the above Hecke algebras for GL,, have been known since the 1990s,
and all of them played an important role in representation theory. However, comparatively little
has been known about the structure of these Hecke algebras in the general setting above. In this
paper, we provide an explicit description of a large class of such Hecke algebras as a semi-direct
product of an affine Hecke algebra with a twisted group algebra. The Hecke algebras that we
treat are endomorphism-valued functions on the p-adic group that transform on an appropriate
compact, open subgroup K via a sufficiently nice irreducible representation p. By [FOAM], these
Hecke algebras include among others the prior-mentioned Hecke algebras of Bernstein blocks that
exist under minor tameness assumptions. Moreover, we obtain an isomorphisms between Hecke
algebras attached to our general pairs (K, p) with Hecke algebras attached to much simpler pairs
of reductive subgroups of G, e.g., pairs (K, p°) with p° a depth-zero representation. In the special
case of Bernstein blocks, this provides an isomorphism between a Bernstein block of positive-depth
and a depth-zero Bernstein block. The Hecke algebra of the latter was essentially already known
by Morris [Mor93|, while the positive-depth Hecke algebras for general p-adic groups remained
a mystery until now. To be precise, Morris’ work only provides the Hecke algebras attached to
(potentially non-singleton) finite products of depth-zero Bernstein blocks, but we also obtain a
description of the Hecke algebras for single Bernstein blocks in the present paper.

The general axiomatic set-up of this present paper allows for the possibility of applying the results
to, for example, Hecke algebras attached to Bernstein blocks arising from other (including future)
constructions of pairs (K, p) that do not rely on the above minor tameness assumptions. Moreover,
we allow arbitrary algebraically closed fields of characteristic different from p as our coefficents.

1.1 Overview of the main results

To explain our results in more detail, let ' denote a non-archimedean local field, G a connected
reductive group over F', and C an algebraically closed field of characteristic different from p.



To a pair consisting of a compact, open subgroup K of G(F) and an irreducible smooth C-
representation (p,V,) of K, we attach the Hecke algebra H(G(F), (K, p)) of compactly supported
functions ¢ : G(F) — End¢(V,) that satisfy o(kigks) = p(k1) o ¢(g) o p(ke) for all ki,ky € K
and g € G(F). The algebra structure arises from the convolution recalled in Section These
algebras are closely related to smooth representations of G(F') as follows. The category of smooth
C-representations decomposes into a product of indecomposable, full subcategories. In the case
that C = C, one calls these subcategories Bernstein blocks, and under additional mild tameness
assumptions, this decomposition takes the form

Rep(G(F)) = [] Rep™#(G(F)),
(K.p)

where the product is taken over appropriate pairs (K, p) such that each block Rep(K"")(G(F )
is equivalent (via an explicit equivalence recalled in Section to the category of unital right
modules over H(G(F), (K, p)):

Rep9)(G(F)) ~ Mod- H(G(F), (K. p))

([Ber84, BK98| Yu01l, KY17, [Fin21al [Fin21b]). The pairs (K, p) in the above Bernstein decompo-
sition were constructed by Kim and Yu ([KY17, [Fin21al) and are a special case of what Bushnell
and Kutzko ([BK98]) called 5-types[|

The pairs (K, p) that we consider in this paper are described in terms of four axioms, Axioms
[3.4.3 3.7.1] and [3.8.2 that distill the key properties of the s-types constructed by Kim and Yu
that are used to prove our main results below about the structure of the attached Hecke algebra
H(G(F), (K, p)). Working with general pairs that satisfy only these four axioms means that our
results will be applicable in a much broader setting than just for the s-types constructed by Kim
and Yu. This is expected to include among others future constructions of s-types in the non-tame
setting.

We now fix a pair (K, p) that satisfies our axioms. The first main result, Theorem [3.10.10} describes
the structure of H(G(F), (K, p)) via an explicit isomorphism

H(G(F), (K, p)) — CIQpar), 1] 5 H(W (par)ass 4) (1.1.1)

where W (par)ag is an affine Weyl group that is a normal subgroup of a larger symmetry group
Q(par) X W(par)ast, ¢: S — C* is a parameter function on a set S of simple reflections generat-
ing W(pnr)ags H(W (par)agt, ¢) denotes the corresponding affine Hecke algebra, and C[Q(pas), 17 ]
denotes the group algebra of Q(pys) twisted by a 2-cocycle 7. Both of these latter algebras, and
the meaning of their semi-direct product, are recalled in Notation [3.10.8

The second main result (see Theorems [4.4.8 and 4.4.11| and Corollary is the existence of a
full-rank reductive subgroup G° C G and an irreducible representation p? of K° := K N G°(F) with
p = p° ® K for some smooth representation , where we view p® also as a representation of K via
an inflation map described in Axiom , such that we obtain an explicit, support-preserving
isomorphism of Hecke algebras

H(GO(F), (K°, p%) — H(G(F), (K, p)). (1.1.2)

'For the experts, in this introduction, we use “s-type” to mean “a type corresponding to a single Bernstein block”.
The s does not refer to a specific block.



In the case where the pairs (K, p) and (K, p°) are both s-types, this leads to an equivalence of
categories (Theorem [4.6.3):

Rep P (G(F)) = Rep®E" ") (GO(F)). (1.1.3)

The possibilities for the triple (G°, K°, p°) are described in an axiomatic way, via Axioms
and In the case of the s-types constructed by Kim and Yu, one can always choose a
triple (G°, K°, p°) with p° of depth zero. In fact, in this case, one option for the triple is already
part of the input of the construction by Kim and Yu, twisted by a quadratic character introduced by
[FKS23|. Since under minor tameness assumptions every Bernstein block has an s-type of the form
constructed by Kim and Yu, this allows one to reduce a plethora of problems about representations
of p-adic groups to the depth-zero setting.

While we have chosen an axiomatic treatment distilling the key properties that are really necessary
for our proofs so that the results can be applied to a variety of different constructions of types,
including future ones, and different settings, including coefficients of positive characteristic, we also
show in the short Section [b| that all depth-zero s-types as well as the depth-zero types correspond-
ing to parahoric subgroups satisfy the axioms. Thus our first main result in that case recovers
and generalizes a result of Morris ([Mor93]). The proof that all s-types constructed by Kim and
Yu satisfy our axioms is deferred to [FOAM]| as it involves the extension of the quadratic twist
introduced by [FKS23] to a group of representatives for the whole support of the Hecke algebra and
a careful analysis of the Heisenberg—Weil representations. This uses a different style of arguments
and is of independent interest.

1.2 Some prior and related work

While our works are the first to provide an explicit description of Hecke algebras attached to such
a broad class of generalizations of types of arbitrary reductive groups, which include in particular
types for all Bernstein blocks if C = C, the group G splits over a tamely ramified extension and p
does not divide the order of the absolute Weyl group of G, mathematicians have studied and used
such Hecke algebras since the 1960s and obtained results about their structure in special cases.

A famous example of the Hecke algebras that we consider is the Iwahori—-Hecke algebra attached to
the Iwahori subgroup and the trivial complex representation thereof. The Iwahori-Hecke algebra
was described in 1965 by Iwahori and Matsumoto for adjoint, split semisimple groups ([IM65]) and
their work was fundamental for further developments in the area.

If G is split and semisimple, and one replaces the trivial character of the Iwahori subgroup I by
a depth-zero character y, then Goldstein |Gol90] computed the Hecke algebras attached to (I, x),
showing that such an algebra is isomorphic to the Iwahori—-Hecke algebra of a smaller group. In
a vast generalization, Morris ([Mor93]) described in 1993 all the Hecke algebras attached to pairs
(K, p) where K is a parahoric subgroup of G(F') and p is an irreducible, cuspidal representation of
the quotient of K by its pro-p unipotent radical, i.e., (K, p) is a depth-zero type for a finite union
of Bernstein blocks by the work of Moy and Prasad ([MP94, MP96]) and, independently, of Morris
(IMor99)).

Knowing the Hecke algebras of types of Bernstein blocks allows one to study the representations in
the Bernstein block via modules of the corresponding Hecke algebra. An example of this approach is
Lusztig’s famous work ([Lus95, [Lus02]) in which he classified all unipotent representations of adjoint



simple algebraic groups that split over an unramified extension by classifying the representations
of the corresponding Hecke algebras using their explicit structure. Unipotent representations are
a special class of depth-zero representations, and Lusztig’s work provides an important case of an
explicit local Langlands correspondence. The restriction to adjoint groups was later removed by
Solleveld ([Sol23]), again using the explicit structure of the affine Hecke algebras attached to types
of Bernstein blocks consisting of unipotent representations.

Beyond depth-zero representations, building on the work of a lot of mathematicians on special cases
over several decades, Bushnell and Kutzko ([BK93a]) provided a description of all of the Hecke
algebras attached to types for all Bernstein blocks for the group GL, in parallel to constructing
these types. Their description of the Hecke algebras played an important role for the construction of
the types themselves as well as for proving the exhaustiveness of their construction of supercuspidal
representations. Using results from Bushnell and Kutzko on supercuspidal representations of SL(n)
(IBK93bl, BK94]), Goldberg and Roche (JGR02, (GR05]) provided a complete collection of types for
all Bernstein blocks of SL(n) and described the structure of the resulting Hecke algebras. Sécherre
and Stevens ([SS08]) achieved the same for all inner forms of GL(n), and Miyauchi and Stevens
(IMS14]) provided types for all classical groups assuming that p # 2 and described the Hecke
algebras corresponding to types associated to maximal proper Levi subgroups. For general split
reductive groups, Roche ([Roc98|) described types and the corresponding Hecke algebras for all
principal series Bernstein blocks under mild hypotheses on p.

For reductive groups G that split over a tamely ramified field extension, Kim and Yu ([KY17])
provided a construction of types based on Yu’s construction of supercuspidal representations ([YuO1l,
Fin21al) that provides types for all Bernstein blocks if p does not divide the order of the absolute
Weyl group of G' (|[Fin21b]). These types are a special case of the setting in which the results of
the present paper apply, as we show in [FOAM].

Recently, Solleveld ([Sol22]) has taken a different approach to understanding Bernstein blocks
of arbitrary connected reductive groups by studying modules over the endomorphism algebras
Endgr)(IT) of a progenerator II of a Bernstein block. Under an assumption of the existence of
a nice 2-cocycle ([Sol22, Corollary 9.4]), he proved that the category of finite-dimensional right
modules over Endgg)(I) is equivalent to the category of finite-dimensional right modules over a
twisted affine Hecke algebra (but these algebras are not isomorphic). Solleveld also studied the
endomorphism algebra of a smaller progenerator II; of a Bernstein block. Under the assump-
tion that the supercuspidal representation of the supercuspidal support of the Bernstein block is
multiplicity free when restricted to the subgroup of compact elements, which he calls “Working
hypothesis 10.2” and which is often but not always satisfied, Solleveld described the endomor-
phism algebras Endg(py(I11), which under minor tameness assumptions is isomorphic to the Hecke
algebra H(G(F), (K, p)) attached to an s-type (K, p) that we consider in this paper. Solleveld
described Endg(py(I11) as a “twisted” semi-direct product of (a more general version of) an affine
Hecke algebra and a twisted group algebra. While this description looks on first glance similar to
ours, a key difference is that the cocycle u” of our twisted group algebra is C*-valued and our
twisted group algebra is a subalgebra of the Hecke algebra H(G(F), (K, p)). Solleveld’s 2-cocycle
in contrast takes values in his affine Hecke algebra and therefore the resulting twisted group al-
gebra is a not a subalgebra in general and the multiplication structure is more complicated than
a usual semi-direct product. For depth-zero representations, Ohara ([Oha24a]) has shown that in
the case where Solleveld’s Working hypothesis 10.2 applies, the coefficients of the quadratic rela-



tions in Solleveld’s affine Hecke algebras agree with our coefficients. In the case of classical groups,
the above endomorphism algebras of progenerators had previously been described by Heiermann
([Heildl).

While results about the structure of Hecke algebras, analogous to our result , have been
achieved previously in many different situations, as described above, results analogous to (|1.1.2))
have to our knowledge previously only been obtained in very special cases and for GL,, ([BK93a]),

principal series Bernstein blocks of split reductive groups ([Roc98]), and supercuspidal Bernstein
blocks ([Oha24bl).

1.3 Sketch of the proofs of the main statements

We define the two isomorphisms ([1.1.1)) and (1.1.2]) explicitly by defining explicit basis elements of
the Hecke algebras H(G(F), (K, p)) and H(G°(F), (K°, p°)) that will get mapped to each other and
to the corresponding basis elements of C[Q(par), 17| x He(W (par)ag, ¢) under the isomorphisms.
The difficult task consists of doing this in a way that preserves the algebra structures.

To provide a few more details, let us note that the pairs (K,p) and (K° p") come with Levi
subgroups M C G and M° C GO satisfying M? C M, which in the setting of s-types record
Levi subgroups appearing in the supercuspidal supports of the corresponding Bernstein blocks, and
with a point zg in the Bruhat—Tits building of G that is contained in the image of the Bruhat-Tits
building of M°. We also recall that K = K N G(F) and p = p° ® k.

The bases for the Hecke algebras are indexed by K- and K%-double cosets, respectively, that satisfy
appropriate intertwining properties, and we show that these indexing sets agree and are isomorphic
to a quotient W (pp0)y. of a subgroup N(pMo)? |, of the normalizer Ngo (M®)(F) of MY in

[IO]lwo o MO

GO that preserves the image of xy in the reduced Bruhat-Tits building of M, see Proposition
3.4.121 This set-theoretic isomorphism endows the indexing set with a group structure, which we
prove is isomorphic to a semi-direct product Q(pas) X W(par)ag whose normal factor is an affine

Weyl group, see Propositions and

The basis elements of the Hecke algebras H(G(F), (K, p)) and H(GO(F), (K, p°)) are then defined
by reinterpreting the two Hecke algebras as Endgr) (indg(F) p) and Endgo(r) (indg(oF) po), and
composing two different intertwining operators. In order to define the (spaces for the) intertwining
operators, we introduce a whole family of pairs (K, p, = p2 ® k) and (K2, p?) for z in an open,
dense subset Age, of an appropriate affine subspace A, of the Bruhat-Tits building of G on which
the group Q(par) X W(par)age acts. The affine space underlying the affine Weyl group W (par)as

is a quotient of A, see Proposition m The families are set up in a way such that (K, p) =

(Kag, pry) and (K°,p%) = (K2, p9,). We define the basis element ®,, € Endg(p (indg(F) p) ~

X
H(G(F), (K, p)) attached to w € Q(par) X W (par)asr to be the composition of the two intertwining
operators

norm .. 1G(F .. 1G(F . 1G(F .. 1G(F
w071z0|a:0: 1ndKiO)(sz) —>1ndKEF)1ZO(pw_1wO) and  Cy1g0¢ 1ndK( )1 (Pw—12) —>1ndKi0)(px0),

wT X
(1.3.1)
where the first intertwining operator, @?UOHT;OWO, is constructed via a normalized integration, see
Section [3.5] in particular Lemma and Definition [3.5.9, and the second intertwining operator,

Cuw—1zg,w> Tesults from choosing an element 75, in the one-dimensional C-vector space Homg,,, (" P

Pnao) for n a lift of w in N(pyo) and "p,, the n-conjugate of py, = p, see Definition [3.5.18

Q
[zo] 5,0




and ([3.5.22) for details. The analogous definitions are made for G°, K°, p¥, adding a superscript
“0” as appropriate.

In order to show that the basis elements defined for an appropriate choice of {7} and {7} lead to
the desired algebra isomorphisms ([1.1.1]) and ((1.1.2)), we equip the indexing group Q(par) X W (par)ast
with a length function i that is trivial on Q(pps) and is the standard length function on the
affine Weyl group W (pas)ag arising from a choice of generators S. We then have to check that
the isomorphisms and preserve the multiplication of two basis elements ®,, and ®,,
in the case where fx_pi(ww') = licrel(w) + Lxcrer(w'), which we call the length-additive case, and
the case of multiplying ®s with itself for s € S C W (par)ag, which we refer to as the quadratic
relations. To achieve both cases, we analyse the two intertwining operators separately as well as
their interaction.

To prove the required properties for the first intertwining operator we introduce a more general
operator O, ind%EF)(pz) — ind?(iF) (py) that is defined for all x,y € Agen and prove a variety
of compatibility properties of these operators, see, for example, Lemma [3.5.2] Proposition [3.5.5
and Lemma for more detailed statements. Moreover, a key step for proving the isomorphism
consists of relating the operator ©,, defined for G directly with the corresponding operator

Gglw defined for G¥, which we achieve in Lemma This result relies on a compatibility of the

representations k, (recall: p, = p2 ® K, ) for varying nearby points z, which is formalized in Axiom
. In the setting of types constructed by Kim and Yu, this means a compatibility of various
Heisenberg—Weil representations, which is proven in [FOAM, Corollary and requires one to
twist the initial construction of Kim and Yu by a quadratic character introduced in [FKS23].

The second family of intertwining operators c¢,,-1,,,, depends on the choice of elements {T},},
which are only determined up to scalars and which lead to a cocycle u7 on Q(par) X W(par)as,
see Notation We prove that we can choose the elements {T,,} such that the only part of
the resulting cocycle p7 that matters is its restriction to Q(pas) (see Proposition [3.10.7). This is
the cocycle that appears in the twisted group algebra C[Q2(par), ,uT]. Moreover, we show that the
choices {T},} for G and the choices {T} for G° can be made in a compatible way that leads to the
same cocycles and therefore to the desired Hecke algebra isomorphism (1.1.2)). This step uses an
extension of (the restriction of) xk to NV (PM)[Q;O]M, which is provided by Axiom [4.1.2(|2). Checking
this axiom in the setting of the twisted construction of Kim and Yu is one of tThe key results of
[FOAM], see [FOAM|, Proposition [4.3.4], which is based on [FOAM, Theorem [2.7.2]. Verifying the
quadratic relations also requires again the compatibility of the k, for nearby points z mentioned
above and forms one of the key steps of the present paper.

We note that we said that the pairs (K, p) and (K°, p%) need to each satisfy a few axioms, Axioms
B.4.1] B.4.3] B.7.1] and [3.8.2] in order for us to conclude (L.1.1), and a few additional axioms
describing the compatibility between the two pairs, Axioms [4.1.2] |4.2.1] and [4.3.1] in order to
achieve . In fact, in order to obtain (|1.1.2)) we require (K, p) to only satisfy Axiom and
we prove in Section [] that the remaining axioms are automatically satisfied by knowing them for
(K°, p%). In practice, checking the axioms for (K, p°) might be significantly easier than for (K, p).
As an example, we show in the rather short Section [5| that depth-zero s-types (KY,p") satisfy
Axioms [3.4.1} [3.4.3] [3.7.1] and [3.8.2] In [FOAM]|, we then apply our results from Section {4 to
deduce that also all the positive-depth s-types (K, p) constructed by Kim and Yu ([KY17, [Fin21al)
satisfy Axioms [3.4.1] [3.4.3] [3.7.1] and [3.8.2]

Our approach to proving the isomorphism ((1.1.1) was heavily inspired by the work of Morris




([Mor93]) who dealt with the case where (K, p°) is a complex, depth-zero type with K being a
parahoric subgroup. In particular, we use similar intertwining operators to those of Morris. How-
ever, to prove that the resulting basis elements of the Hecke algebras satisfy the desired relations,
Morris defines a version of the first intertwining operator ©,,-1,|,, for w contained in a larger
group than the indexing group Q(par) X W(par)ag. Our approach in contrast consists of defining
the first intertwining operator not for a larger group, but, instead, of defining intertwining operators
Oy, for all x,y € Agen, i.e., also for points z and y that do not lie in the Q(par) x W (par)ag-orbit
of zp. Although we only need the intertwining operator ©,,-1,|,,, to define the basis element ®,,
for w € Q(par) X W(par)ast, these general intertwining operators @, allow us to prove the desired
properties about ®,, in Sections and [3.8] We believe that this approach makes our arguments
look cleaner, and at the same time allows us to treat a more general setting than the one that
Morris dealt with. And it provides us with the set-up in which we can prove our second main

result, (1.1.2)).

1.4 Structure of the paper

We have tried to state all assumptions that apply in each subsection at the beginning of the
subsection so that it is easy to see what assumptions are in place where. Moreover, in the main
results and in propositions that get used later within the paper, we have repeated the assumptions
that are in place to provide clarity for the reader and allow for easier backtracking through the
results and to make it easier to follow our proofs. We have also tried to state all of the axioms as
early as possible in each subsection so that a reader interested in simply knowing what axioms they
need to verify to apply the results can reach the statements of the axioms as quickly as possible.
A list of axioms is provided on page We have also created a list of notation (page .

We give a brief overview of the following sections of this paper.

In we fix some notation, and in we recall the definition of a Hecke algebra as a convolution
algebra of functions and its relation with the second interpretation as an endomorphism algebra,
because we will use both points of view.

In Section |3] we prove the structure theorem for the Hecke algebra associated to a pair
(K, p) that satisfies Axioms [3.4.1] [3.4.3} [3.7.1] and defined there. For this, we first construct
an explicit vector-space basis {¢y} of H(G(F), (K, p)) indexed by the group W(pM)EO ., under
the assumptions of Axioms [3.4.1] and [3.4.3| as follows. In we introduce the family (K, p.)

mentioned above indexed by Agen. In §3.5, for w € W(pnr) , we define the intertwining op-

V)

[zo]m
erators 630_1"?;0@0 (see (1.3.1)) and define the element ®,, of Endgr) (indf(if) (o))
as their composition. We then define the basis element ¢,, € H(G(F), (K, p)) to be the element
corresponding to ®,, via the isomorphism H(G(F), (K, p)) ~ Endg(p) (indgif) (pwo)) given in
Based on discussions about the intertwining operators in we investigate the relations involving
the elements ,, in the length-additive case. In i we prove that the indexing group W(pM)EO]M
is isomorphic to the semi-direct product Q(pas) X W (par)ag mentioned above under the assumption
of Axiom In we introduce Axiom [3.8.2] and under this axiom, we prove quadratic
relations for the elements g corresponding to simple reflections s € W (pas)ag. When the char-
acteristic £ of C is zero or a banal prime, the coeflicients of the quadratic relations are explicitly

calculated in In §3.10, we prove the structure theorem ([1.1.1)) by proving appropriate braid
relations and combining them with the discussions from previous subsections. In we assume

and Cy,—14 4



that the coefficient field C admits a nontrivial involution. Under this assumption, we prove that we
can take the isomorphism in ([1.1.1)) such that it preserves anti-involutions on both sides. In §3.12]
we classify the support-preserving isomorphisms in (|1.1.1]).

In Section 4 we prove the Hecke algebra isomorphism for a pair (K, p) consisting of a com-
pact, open subgroup K of G(F) and an irreducible representation p of K and a similar pair (K, p°)
for a reductive subgroup G° of G that are related according to Axioms [4.1.2, [4.2.1 and [4.3.1. We
assume Axioms [3.4.1] [3.4.3} [3.7.1, and for the pair (KY, p°) but only assume Axiom :3.4.1
for the pair (K, p). We prove in that the other axioms for (K, p) automatically follow in this
case. Thus, by applying the results in Section [3|to the pairs (KY, p") and (K, p), we obtain the de-
scriptions of the Hecke algebras as semi-direct products of affine Hecke algebras with twisted group
algebras. The results of §4.3] imply that the affine Weyl groups and the subgroups of length-zero
elements for (K, p°) and (K, p) agree. In we prove the Hecke algebra isomorphism (1.1.2)).
We have already shown that each of H(G(F), (K,p)) and H(G(F), (K, p°)) is isomorphic to a
semi-direct product of an affine Hecke algebra (where the underlying affine reflection groups are
the same) with a twisted group algebra (where the underlying groups are the same). We complete
the argument by showing that, if certain choices are made carefully, then the parameters of the
two affine Hecke algebras match up, as well as the two cocycles that implement the twisting of
the two group algebras. In §4.5] under the assumption that C admits a nontrivial involution, we
prove that we can take the isomorphism in such that it preserves anti-involutions on both
sides. As an application, in we prove the equivalence of Bernstein blocks in . Moreover,
we also prove that when restricted to irreducible objects, the equivalence of Bernstein blocks pre-
serves temperedness, and preserves the Plancherel measure on the tempered dual up to an explicit
constant factor (see Theorem .

In Section |5, we determine the structure of all Hecke algebras arising from depth-zero pairs (K, p).
We review the construction of such pairs in §5.1] and describe the system of hyperplanes that
applies to this case in In we obtain the structure of the Hecke algebras (Theorem
by showing that depth-zero pairs satisfy those axioms from Section |3| necessary to allow us to apply

Theorem [B.10.10

1.5 Guidance for the reader

If a reader is interested in our results only in the case of types as constructed by Kim and Yu, we
suggest the following approach to the paper: Start with [FOAM] Section [4] and read until [FOAM|,
Section to learn the definitions of the objects G, M, xo, 9, Km, pm, Kzy Ky 4, pe and GO,
MO Ky, pao, K9, K27+, p2. Afterwards, we encourage the reader to read Section [3|and [4 of the
present paper but to replace in their mind the abstract objects G, M, xo, 9, K, pm, Koy Koo+,
pz and GO, M° Ky, ppo, K2, K%Jr, pY with the explicit objects introduced in [FOAM], Section
[4]. We have provided a lot of cross-references between [FOAM, Section [4] and Sections [3] and [4] of
this paper to ease this approach.

For a reader who is interested in our general results and who is already familiar with either the
construction of Kim and Yu or depth-zero types, we have added after the introduction of each ab-
stract object an explanation or reference regarding what these objects are in these specific settings,
and we provide references to where the axioms are proven in these settings. Such a reader might
also benefit from skimming or reading [FOAM)| Section 4] until [FOAM, Section (for the types
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as constructed by Kim and Yu) and/or Section [5| until Section (for the depth-zero setting) in
parallel to reading Sections [3] and [f] of the present paper.

For a reader using the axiomatic set-up to prove similar results in other settings, we have provided
a complete list of axioms on page [82| with references to where the axioms can be found. Moreover,
we have tried to state the axioms as early as possible in their subsections to allow the reader to
receive the desired information, i.e., the axioms to check, as quickly as possible.
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2 Preliminaries

2.1 Notation

Let F be a non-archimedean local field endowed with a discrete valuation ord on F'* with the value
group Z. For a finite field extension E of F', we also write ord for the unique extension of this
valuation to E*. We write Op for the ring of integers of E, and let O = Op. Let p denote the
characteristic of the residue field f of F'.

Let R and C denote the fields of real and complex numbers, respectively. Let C denote an alge-
braically closed field of characteristic £ # p. Except when otherwise indicated, all representations
below are on vector spaces over C. We fix a square root p*/2 of p in C. For an element ¢ = p" € C
with n € Z, we write ¢!/2 := (pl/Q)n.

For a torus S that is defined and splits over F', we let X*(S) denote the character group of S and
X.(S) the cocharacter group of S.

For a connected reductive group G defined over F', we write Z(G) for the center of G and Ag for
the maximal split torus in Z(G). For a reductive subgroup M of G, we denote by Ng(M) (resp.
Z¢(M)) the normalizer (resp. centralizer) of M in G.

We denote by B(G, F) the enlarged Bruhat—Tits building of G, and for a maximal split torus S
of G, we denote by A(G, S, F) the apartment of S in B(G, F). We also write BY(G, F) for the
reduced building of G and A™(G, S, F) for the apartment of S in B*Y(G, F). For x € B(G, F),
we denote by [z]g the image of z in B"Y(G, F). We might also write [x] instead of [z]g if the
group G is clear from the context. We write G(F), and G(F'), for the stabilizers of z and [x]
in G(F'). We denote by G(F)z,0 the group of O-points of the connected parahoric group scheme
of G associated to the point z, and by G(F)g 0+ the pro-p radical of G(F)z0. The reductive
quotient of the special fiber of the connected parahoric group scheme above will be denoted by G,.

11



Thus, G4 (f) = G(F)z,0/G(F)z0+. (We will use this font convention more widely. Thus, for a Levi
subgroup M of G, and = € B(M, F'), we have the f-group M,.)

If P is a parabolic subgroup of G, then let Up denote the unipotent radical of P. We define the
set U(M) as
U(M)={Up | P C G is parabolic with Levi factor M} .

Suppose that K is an open subgroup of a locally profinite group H. For a smooth representation
(p,V,) of K, we denote by

(indff (p), ind (V)

the compactly induced representation of (p,V,). Here, we realize indf(p) as the right regular
representation on

ind¥ (V,) = {f: H — V,: compactly supported modulo K | f(kh) = p(k)(f(h)) (k € K,h € H)}.

Suppose that K is a subgroup of a group H and h € H. We denote hKh~" by "K. If p is a
representation of K, we write "p for the representation x — p(h~'zh) of "K. If an element h € H
satisfies

HomehK(h% p) # {0},

we say that h intertwines p. We write
I (p) = {h € H | h intertwines p} .

We also write

Nu(K) = {h cH|"K = K} and  Ny(p) = {h € Nu(K) |~ p} .

For a representation (p,V),) of a group H, we identify p with its representation space V, by abuse
of notation. For any vector space V', we write idy for the identity map on V.

Throughout the paper, we let G be a connected reductive group defined over F'.

2.2 Hecke algebras and endomorphism algebras

Let K be a compact, open subgroup of G(F") and let (p, V) be an irreducible smooth representation
of K. We recall the definition of the Hecke algebra associated to the pair (K, p). Let H(G(F), (K, p))
denote the space of compactly supported functions

¢: G(F) — Endc(V,)

satisfying
@(k1gks) = p(k1) o p(g) o p(k2)

for all k1,k2 € K and g € G(F'). We put an associative C-algebra structure on H(G(F), (K, p)),
from now on called the Hecke algebra associated to the pair (K, p), as follows. Suppose that ¢; and
w2 are functions in H(G(F), (K, p)). We define the function p; * ¢y € H(G(F), (K, p)) as

(prep2)(g)= > ei(h)opa(hg)
heG(F)/K
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for g € G(F) (see [Vig96, §8.6]). We note that since ¢; is compactly supported, the sum on the
right-hand side is a finite sum. We also note that when the characteristic ¢ of C is zero, then this
multiplication is equivalent to the standard convolution operation

(1% p2)(g) = /G(F) o1(h) o pa(h™'g) dh,

where dh denotes a Haar measure on G(F') which is chosen so that K has measure one. (However,
the isomorphism class of H(G(F), (K, p)) does not depend on the choice of measure.) If the group
K is clear from the context, we drop it from the notation and write H(G(F), p) for H(G(F), (K, p)).

Remark 2.2.1. The definition of H(G(F'), p) above is different from the definition of H(G(F), p) in
[BK98|, Section 2]. More precisely, our H(G(F), p) is denoted by H(G(F), p") in [BK9IS, Section 2],
where p¥ denotes the contragredient representation of p. We also note that our H(G(F),p) is
written as H(G(F), p) in [KY1T7, Section 8] and [YuOl, Section 17].

For ¢ € H(G(F), p), we write supp(p) for the support of ¢. For g € G(F), p € H(G(F),p), and
k e K NIK, we have

p(k) o p(g) = o(kg) = v(g(g"kg)) = ¢(g) ° p(g~"kg) = ©(g) o %p(k),

and hence
¢(9) € Homgnak (%, p).

Therefore we obtain that supp(¢) C Igr)(p) for any ¢ € H(G(F'), p). For g € G(F'), we define the
subspace H(G(F'), p)g of H(G(F), p) as

H(G(F),p)g ={p € H(G(F),p) | supp(p) C KgK}.

The subspace H(G(F), p)gy is zero if g ¢ I (r)(p), and it depends only on the double coset KgK,
and not on the choice of the coset representative g. As a vector space, we have

H(G(F),p) = &y H(G(F), p)g- (2.2.2)
9€K\Ig(r)(p)/ K

According to [Vig96l Section 8.5], there exists an isomorphism of C-algebras
H(G(F), p) = Endgr (ind (). (2.2.3)

We write the isomorphism above explicitly. For v € V,,, we define f, € indIG{(F)(Vp) as

£.(g) = {p<g><v> (9 € K),

0 (otherwise).

Then for ® € Endg( F)(indf((F) (p)), the corresponding element ¢ € H(G(F), p) is defined by

v(9)(v) = (2(fv)) (9) (2.2.4)
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for v e V, and g € G(F). Conversely, for ¢ € H(G(F), p), the corresponding element
.. G
NS Endg(F)(de(F) (p))

is defined by
@@= > b (f(h'g)

heG(F)/K
for f € indf((F)(Vp) and g € G(F)).

For a subgroup K’ of G(F') containing K, we identify the compactly induced representation ind? (p)

with the K’-subrepresentation of indIG{(F) (p) on the space

{f € indf((F)(Vp) ‘ supp(f) C K’},

where supp(f) denotes the support of f. More generally, for a subset K’ of G(F) such that
K - K' = K', we define a subspace ind% (V) of indf((F)(Vp) as

indf¢’ (V) = { f € ina (v, | supp(f) € &'}

In particular, we regard (p,V),) as a K-subrepresentation of (indg(F) (p), indf{(F)(Vp)) via the iso-

morphism
p — ind%(p)

defined via
V, 3 v f, € indi (V).

Lemma 2.2.5. Let g € K\Igp(p)/K. Let ® € Endg(F)(indf{(F) (p)) and ¢ € H(G(F),p)
correspond to each other via the isomorphism in (2.2.3). Then the element ¢ is supported on KgK
if and only if

® (V) C ind”™ (V).
Proof. According to the construction of the isomorphism in (2.2.3)), we have

p(h)(v) = (®(f0)) (h)

for all h € G. Hence, the function ¢ is supported on KgK if and only if for any v € V,,, we have

supp (®(fy)) C KgK,

that is, ® (f,) € indk™ (V). O
For a subgroup K’ of G(F) containing K, we define a subalgebra H(K’, p) of H(G(F), p) as

H(K',p) = {¢ € H(G(F),p) | supp(p) C K'}.
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According to Lemma(2.2.5| the subalgebra H(K’, p) corresponds to the subalgebra Endg ) (md G )(p)) K
of Endg(p (ind%" (p)) defined as

Endg(r) (indi" () ., = {® € Bndgr (ind " () | @ (V) < ndfs' (v,)}
_ {@ € Endgp) (ind?((F (0) | @ (indf'(v,)) < indf (V) }

via the isomorphism in . Similar to we also have an isomorphism
M

H(K', p) — Endg (indf (p)), (2.2.6)
and one can check easily that the following diagram commutes:
22
H(K', p) B2 Endg ) (nd$ () 1 (2.2.7)
id O J{res
2-2:6)

H(K', p) ——— Endg (ind¥ (p)),
where res denotes the restriction map defined by

r— (I)|1ndKl (Vp)®

In particular, the restriction map is an isomorphism. We regard End g/ (ind? (p)) as a subalgebra
of Endg(r) (indf{(F) (p)) via the inverse of this isomorphism.

We will also need a slightly more general setup. For this, let H be a locally profinite group and let
K1, K5 be open subgroups of H. Let p1, resp., ps, be a smooth representation of Ky, resp., Ks. For
an open subgroup K’ of H containing K7 and K3, we define a subspace Hom (imdg1 (p1), imdg2 (p2)) X

of Homp (de1 (p1), indgz(pg)) by
Hom gy (indgl (pl),indg2 (2)) o0 = {‘P € Hompy (ind%l (,01),ind§2 (p2)) )<I> (Vo) C indg; (VpQ)}
— {@ € Homyr (ndff, (p1), inaf, (p2) ) |@ (indf] (V1) ) © indff, (Vo) }.

Lemma 2.2.8. The restriction map ® — P gives an isomorphism

indfs’ (V)
Hompy (ind%1 (p1), indg2 (pg))K, — Hompg (indgi (p1), indg; (p2)> .

Proof. Combining Frobenius reciprocity with the transitivity of compact induction, we obtain an
isomorphism
Hompy (ind%1 (p1), indg2 (p2)) ~ Homp (ind%, (ind% (p1)), indg2 (p2))
~ Hompg (indf., (p1), indfZ, (pa) | rcr).-
Under this isomorphism the subspace Hom g (de1 (pl) 1ndK2 (pg)) of Homp (de1 (p1), indg2 (p2))

corresponds to the subspace Hom g (de1 (p1), de2 (p2)) of Hom g (1ndK1 (pl) indf, (p2)| k), and

the induced isomorphism Homp (md i, (p1), ind® 5 (p2)) oo — Homg (md &, (p1), indﬁ; (p2)) agrees
with the restriction map. ]
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3 Structure of the Hecke algebra

We recall that G is a connected reductive group defined over F. In this section, we will provide
a description of the Hecke algebra attached to an appropriate compact, open subgroup K., C G
and an appropriate representation (pg,, Von) of K,, as a semi-direct product of an affine Hecke
algebra and a twisted group algebra, see Theorem We describe the pairs (K, pz,) that
we consider through several axioms introduced in this section. These are Axioms [3.4.1], [3.4.3] [3.7.1],
and below. The pairs that we consider include among others the case where (K, pz,) is a
type for a single Bernstein block as constructed by Kim and Yu (JKY17, [Fin21al) or a depth-zero
type attached to either a single Bernstein block or the case where K, is a parahoric subgroup,
which is the case studied previously by Morris ([Mor93]).

Readers interested in depth-zero types might find it useful to first read Sections and readers
interested in the types constructed by Kim and Yu might find it helpful to first read Sections
and in [FOAM], in order to keep these special cases as examples in mind when reading the
axiomatic set-up below. Those interested only in the set-up in [FOAM] might even completely
replace the below axiomatic objects by the explicit objects introduced in [FOAM, Section 4] in
their head.

3.1 The affine space

In this subsection, we will introduce an affine subspace A, of B(G, F), which will be used to
index pairs of compact, open subgroups K, and irreducible smooth representations p, of K, below.
More precisely, we will consider a family {(Kz, pz)}zed,., of compact, open subgroups K, of G(I')
and irreducible smooth representations p, of K, indexed by an appropriate subset Age, of generic
points in A, (see Sections and . The family {(Kz, pz)}eed,e, Will be used to define basis
elements of a Hecke algebra (see Definition . In Proposition below, we will also define
an affine root system I'(ppr) on a quotient A e of Ag,, whose affine Weyl group underlies the
affine Hecke algebra appearing in our description of the Hecke algebra attached to (K, pz,) in

Theorem [3.10.101

To define the affine space A,,, we fix a Levi subgroup M of G. If we want to describe the Hecke
algebra attached to a type for a Bernstein block of a C-representation, then M is a Levi subgroup
of the supercuspidal support of the Bernstein block. We recall that we write Ap; for the maximal
split torus of the center Z(M) of M. Let B(M,F) — B(G,F) be an admissible embedding of
enlarged Bruhat—Tits buildings in the sense of [KP23|, §14.2], which exists by [KP23| Section 9.7.5].
We regard B(M, F') as a subset of B(G, F') via this embedding. Let zo € B(M, F'). We define the
subset A, of B(M, F) by
-Agco =z + (X*(AM) Rz R) .

More precisely, zo + (X.(Ay) ®z R) is an affine subspace of every apartment containing xo (since
Ajy is contained in every maximal split torus of M), and the image of this affine space in B(M, F)
is independent of the choice of apartment. We fix an Ng(M)(F)-invariant inner product ( , )
on X, (An)®zR. (Such an inner product exists, because the action of Ng(M)(F') factors through
a finite group.) Hence, the space A,, is a Euclidean space with the vector space of translations
X.(Apr) ®z R. We define the subset Ng(M)(F) of G(F) by

[zo] ar

NG(M)(F)ip1,, = {n € No(M)(F) | nzo € Ay ).

[xo] s
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Lemma 3.1.1. Let S be a mazimal split torus of M such that o € A(G,S,F). Then we have

Ne(M)(F) (g}, = (Na(M)(F) (g}, VNG (S)(F)) - M(F)ag.0-

[xo]ar

Proof. Let n € Ng(M)(F)[y),,- Since 29 € A(G, S, F), and nzg € A, C A(G,S,F), we have
o € A(G,S,F) N A(G,n"1Sn, F). Hence, there exists an element m € M (F)y,0 such that
m(n~1Sn)m~! = S. Thus, we obtain that

n=nm"' -meée (Ng(M)F) N NG(S)(F)) - M(F)zq0. O

[zo]ns

Lemma 3.1.2. Let n € Ng(M)(F), Then we have nx € Ay, for all x € Ay, .

xo|ar-

Proof. Let S be a maximal split torus of M such that zo € A(G, S, F). According to Lemma
we have

Ne(M)(F) iz}, = (Na(M)(F) (g}, VNG (S)(F)) - M(F)zg.0-

[zo]

Since ma = x for all m € M(F)y,0 and x € Ay, it suffices to show that nz € A, for all

n € No(M)(F)g),, N Na(S)(F)

[zo]ar
and x € Ay,. We write x = 29 + a for some
a€ X, (Ay)®zR C X.(5)®zR.
According to [KP23, Proposition 6.2.4], we have
nx = n(xg + a) = nxg + (Dn)a,

where Dn denotes the image of n in the finite Weyl group N¢(S)(F')/Za(S)(F'), which acts on the
vector space X,(S) ®z R. Since n normalizes M and a € X,(Ay) ®z R, we have

(Dn)a € X, (Ay) @z R.

Thus, the assumption n € Ng(M)(F); implies that

xo] ;

nx = nxo + (Dn)a C Az + (Xu(Am) @z R) = Ay, O

For later application it will be useful to state the result for an arbitrary point z( € A,,.

Corollary 3.1.3. Let z(, € Ay,. If an element n € Ng(M)(F) satisfies nxy € Ag,, then we have
nx € Ay, for all x € Ay,.

Proof. This follows from Lemma by replacing xo by . O
According to Lemma NG(M)(F)(z],, is a subgroup of G(F'), and the action of G(F') on

B(G, F) induces an action of Ng(M)(F); on Ag,. For n € Ng(M)(F) and a subset X of
Ay, we write n(X) = {nz | z € X}.

o] M [zo] s
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3.2 Affine hyperplanes

Let $ be a possibly empty, locally finite set of affine hyperplanes in A,, that do not contain z¢. The
complement of these hyperplanes in A;, decomposes into connected components and the compact
open subgroup K, that we will attach each point x in the complement will be constant on those
components. The image on the quotient Ay, of Ay, of an appropriate subset Hire1 C $ of
K-relevant hyperplanes will form the set of vanishing hyperplanes of the affine root system I'(pas)
mentioned above in Section (see Definition and Proposition . In the setting of
depth-zero types discussed in Section [5] the set of affine hyperplanes ) that we want to consider is
described in In the setting of positive-depth types as constructed by Kim and Yu, the set of
affine hyperplanes $ that we want to consider is described in [FOAM, Section . We define the
subset Agen of generic points of A, by

Agen = Azy N (U H)
HeH
For z,y € Agen, we define the subset $, , of $ by
Ny ={H € H | z and y are on opposite sides of H}.
Since §) is locally finite, we have #£);, < co. We write d(z,y) = #94.4-
Lemma 3.2.1. Let x,y, 2 € Agen. Then we have
d(z,y) +d(y,z) > d(z, 2).

Moreover, the following conditions are equivalent:

(a) d(z,y) +d(y, z) = d(=, 2).
(b) sz,ya 5y,z C sz,z-
(C) S;Jx,y N ﬁy,z - @

Proof. For any H € §), ., exactly one of the following occurs:

e We have H € $; .
e We have H € 9, ..

Hence, we have d(x,y) + d(y, z) > d(z, z), and equality holds if and only if $,4,$,. C 9z,.. We
will prove that conditions (b) and (c) are equivalent. Suppose that $;,,$, . C 95 .. Then, for
any H € $;,, we also have H € $), .. Since the points x and y are on opposite sides of H, and
the points x and z are on opposite sides of H, we obtain that the points y and z are on the same
side of H. Hence, we have H ¢ $),, .. Thus, we conclude that $,, N, . = 0. On the other hand,
suppose that £, , N9, . = 0. Then, for any H € §, ,, the points y and z are on the same side of
H. Hence, the points x and z are on opposite sides of H, that is H € $); .. Thus, we conclude that
Nzy C Nz,.. Similarly, we can prove that $, . C 9, .. O
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3.3 Quasi-G-covers

Let K be a compact, open subgroup of M(F),, and let (pa,V,,,) be an irreducible smooth
representation of Kjs. For example, the pairs (K, par) considered in [FOAM] Section 4] include
the supercuspidal types constructed by Yu ([YuOl]) twisted by a quadratic character that arises

from the work of [FKS23].
Notation 3.3.1. We denote by N(pas)z,],, the subgroup of Ng(M)(F)

N(oa) izl = Near)y(pmr) NV Na(M)(F)izo]a -

Definition 3.3.2. Let K (resp. Kjs) be a compact, open subgroup of G(F) (resp. M (F)) and let
p (resp. par) be an irreducible smooth representation of K (resp. Kjr). We say that (K, p) is a
quasi-G-cover of the pair (K, par) if for every parabolic subgroup P C G with Levi factor M, we
have that the pair (K, p) is decomposed with respect to (M, P) (in the sense of [BK98|, Definition
6.1]). Equivalently, for every U € U(M) the following conditions are satisfied:

given by

[zo]ar

(1) We have the decomposition

K=(KNU(F) - (KNM(F))- (KNU(F)).
(2) We have K = K N M(F), the restriction of p to Ky is par, and the restriction of p to the
groups K NU(F) and K NU(F) is trivial.

Remark 3.3.3. Let M be a Levi subgroup of G and U € U(M). Then, according to [Bor91,
Proposition 14.21 (iii)], the product map

U(F) x M(F) x U(F) — G(F)

is a homeomorphism onto an open subset of G(F'). Hence, Condition of the definition of a
quasi-G-cover is equivalent to the condition that the product map

(KNU(F)) x (KN M(F)) x (KNU(F)) = K

is a homeomorphism of topological spaces. In particular, any element of K can be written uniquely
as a product of three elements in K NU(F), K N M(F'), and K NU(F), respectively.

Remark 3.3.4. If (K, p) is a G-cover of (K, par) in the sense of [BK98| Definition 8.1], then
(K, p) is a quasi-G-cover of (K, par) by definition.

Quasi-G-covers will allow us to compare intertwiners of representations of compact, open subgroups
of G(F') with intertwiners of representations of compact, open subgroups of M (F'). More precisely,
we have the following lemma that will be used to study the support of Hecke algebras.

Lemma 3.3.5. Let K1 and Ky be compact, open subgroups of G(F'), and let Kyrq and Ky be
compact, open subgroups of M(F'). Let p1, p2, pa1, and parz be irreducible smooth representations
of K1, Ko, Kn, and K2, respectively. Suppose that the pair (K;, p;) is a quasi-G-cover of the
pair (Kari, parq) for i =1,2. Then we have

Hom e, nre, (p1,p2) = Hompey, nrcy, o (Par,15 par2) -
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Proof. We fix U € U(M). Since (Kj, p;) is a quasi-G-cover of (K i, pari), we have
K; =(K;NU(F))- K- (KiNU(F)),

the representation p; is trivial on K; NU(F) and K; NU(F), and we have Pi|KM,¢ = pum, fori=1,2.
Thus we obtain

Homye, ke, (p1,p2) = Hom(KlﬂKgﬁU(F))~(KMJQKM,?)'(K1ﬂKzﬂU(F)) (p1, p2)
- HOInK]wylmKMQ (p17 p2)
- HomK]u’lﬂKM,Q (pM717 pM72)’ D

Corollary 3.3.6. Let K be a compact, open subgroup of G(F) and p be an irreducible smooth
representation of K. Suppose that (K, p) is a quasi-G-cover of (Kr, par). Then we have

N(pat)zolnr € Lar)(p)-

Proof. Let n € N(par)z),,- Since the pair (K, p) is a quasi-G-cover of (K, par) and n normalizes
the group M, the pair ("K,"p) is a quasi-G-cover of ("Kjs,"par). Then Lemma implies that

Homgnng ("p, p) = Hompg,,nic,, ("par, par)-

Since n € Ng(r)(par), the right-hand side is non-trivial. Hence, we obtain that the left-hand side
is also non-trivial, that is, n € Ig(p)(p)- O

3.4 Family of quasi-G-covers and a group structure on the Hecke algebra support

We will define and study basis elements of the Hecke algebra attached to a quasi-G-cover of
(K, par) below. To do this, we study not just one quasi-G-cover, but rather a family of quasi-
G-covers of (K, py) indexed by Agen with some additional data and properties. More precisely,
consider a family

K={(Ky, Ky +, (pa, sz))}xeAgen )

where each K is a compact, open subgroup of G(F'), each K ; is a normal, open subgroup of K,
and each (pz,V),) is an irreducible smooth representation of K,. We will refer to such a family

as a family of quasi-G-cover-candidates. Let N(p M)[ZO]M be a subgroup of N(pyy) containing

[zo] s

Ap(F). Eventually (starting with Corollary [3.4.14]) we will assume that N(pM)[Q;O]M is sufficiently
large, more precisely large enough to satisfy Axiom [3.4.3| below. For now we first only assume that
K and N(par)y ., satisfy the following:

[zo]

Axiom 3.4.1.

(1) The restriction of p, to K, 4 is 0,-isotypic for some character 6, of K, y.

(2) The action of N(p M)[Q;O]M on Ay, preserves the set §. In particular, N (pM)?ZO}M stabilizes the

the subset Agen of Ag,.
(3) For every z € Agey, and n € N(pM)? 0 We have

Zo

Ky =nKynt and Kz = nKmﬁrn*l.
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(4) For every x € Agen and for all U € U(M ), we have

(a) the pair (K, ps) is a quasi-G-cover of (K, par),
(b) Ky =Ky Kqy,
() Kot = (Kot NU(F)) - (Koq N M(F)) - (K:v,—i— DU(F)) :

Moreover, the group K, N M(F) is independent of the point & € Agen.

(5) For z,y,z € Agen such that
d(z,y) +d(y, z) = d(z, 2),

there exists U € U(M) such that
K,NU(F)C K,NU(F) C K. NU(F)

and
K.NU(F)CK,NU(F)C K,NU(F).

In particular, for any x,y € Agen, there exists U € U(M) such that
K,NU(F)CK,NUF) and K,NTU(F)C K,NT(F).

Once we assume this axiom for a family of quasi-G-cover-candidates K, we also refer to K as a
family of quasi-G-covers.

Remark 3.4.2. The last paragraph of Section [5.1] see p. [77, summarizes the families that we
consider in Section and the last paragraph of [FOAM]| Section, see p. in [FOAM], summa-
rizes the families that we consider in [FOAM]. These cases include the types for single depth-zero
Bernstein blocks and those for positive-depth Bernstein blocks as constructed by Kim and Yu
(twisted by a quadratic character following Fintzen, Kaletha and Spice), respectively. Axiom m
for the families considered in Section [f]is vertified in Lemmal[5.3.1 and Axiom for the families
considered in [FOAM] is verified in [FOAM, Lemma [4.3.2].

Recall that the support of the Hecke algebras attached to the pairs (K, p;) for © € Agen is given
by Ig(r)(pz). According to Corollary and Axiom , we have

N(pan)y,, © N(oan)wolar € o) (p2)

for all € Agen. Since Ig(ry(pz) = Ku - Igr)(pz) - Ky by definition, we also have the inclusion

[zo] psr

Ky Clgr)(pa)-

In order to access the support of the relevant Hecke algebras via N (pM)[QiO]M, which will allow
us to enrich the support with a group structure in Corollary [3.4.14] and Definition we will
also suppose starting from Corollary that this inclusion is in fact an equality, i.e., that the

following axiom holds.

Axiom 3.4.3. We have
Ko N(pa)p - Ko = Iy (pa)

[zo]ar
for all x € Agen.
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In the depth-zero setting of Section [5] this axiom holds by Proposition [5.3.2] and in the setting of
[FOAM] this axiom holds by [FOAM)| Proposition [4.3.5].

Remark 3.4.4. To prove Lemma [3.4.5} Lemma below, we only need Axiom but we
believe that having all axioms in one place will help the reader find them more easily.

We record some consequences of Axiom [3.4.1] that we will use throughout the paper.
Lemma 3.4.5. Let x € Agen. Then we have
Ko NU(F) = Ky 4 NU(F)

for allU e U(M).

Proof. According to Axiom [3.4.1j[a]), we have
K, = (K, NU(F)) - Ky - (K, NU(F)).
On the other hand, according to Axiom |3.4.1|{4bl4c)), we have

Ky =Ky Kyy
= Kyt - (Kot NU(F)) - (Ko N M(F)) - (Ku e N U(F))
= (Kot NU(F)) - Kyp - (Koy NU(F)) .

Then the lemma follows from Remark [3.3.3 O
Lemma 3.4.6. Let x,y € Agen. Then we have

KoMKyt =Koy MKy,
Proof. We fix U € U(M). By using Axiom , we obtain that

K, NKy = (K, NKy NUF)) - (KzNKy4 NM(F))- (K, NKy 4 NU(F))
and
Koy NKyy = Ky N Ky NU(F)) - (Kopr N Ky NM(F)) - (Ko 0Ky NU(F)).
Then the claim follows from Lemma and the fact that K, . "N M(F) = K, N M(F). O
Lemma 3.4.7. Let v,y € Agen and U € U(M) such that
K, NU(F)CK,NU(F) and K,NUF)CK,NU(F).

Then the inclusions Ky NU(F) C Ky 4+ C K, induce bijections

(KyNUWF)) /(K NUF)) ~ Ky 4/ (Key N Ky y) ~ Ky / (Ko N EKy).
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Proof. According to Axiom , we have
Ky = (K, NUF)) Ky - (K, NU(F)) and Ky = (K,NU(F)) Ky - (K,NU(F)).
Then the assumptions of the lemma imply that
(KyNU(F))/ (K, NU(F)) ~ Ky/ (K: N Ky).
Since K, NU(F) = K, +NU(F) C K, 1 by Lemma the claim follows from Lemma O

Lemma 3.4.8. Let x,y € Agen. Then the order of the quotient K,/ (K, N Ky) is a power of p. In
particular, this integer is invertible in C.

Proof. According to Axiom 3.4.1|(5), there exists U € U (M) such that K, NU(F) € K,NU(F) and
KyNU(F) C K;NU(F). Then the claim follows from Lemma and the fact that K, NU(F)
is a pro-p-group. [

Lemma 3.4.9. Let 2,y € Agen. Then we have

Homgk,nk, (pz, py) # {0}

In particular, we have
0x|Kw,+ﬂKy,+ = 93/|Kx,+me,+‘

Proof. Since (K, p;) and (K, py) are quasi-G-covers of (K, par), Lemma implies that

HoszﬂKy (va Py) = EIldKM (pM) 7é {0}
The last claim follows from the assumption that the restriction of p, to K, 1 is 8,-isotypic and the
restriction of p, to K, 4 is 0,-isotypic. O

v
[zo] ar

Lemma 3.4.10. Let x € Agen and n € N(pum)
of the pair (Kur, "par).

. Then the pair (Kpz,"pe) is a quasi-G-cover

Proof. Since the pair (K, p;) is a quasi-G-cover of (Kps, par) and n normalizes the group M,
the pair ("K,,"p,) is a quasi-G-cover of ("Kys,"ppr). Then the lemma follows from the facts that
"Ky = Kpy and "Kjy = Kypy. O

@

[ . Then we have
xo]m

Lemma 3.4.11. Let € Agen and n € N(pas)
0.(n"1kn) = O (k)
forallk € Ky 4.

Proof. According to Axiom [3.4.1|{4a)), the pair (Kyq, pne) is a quasi-G-cover of the pair (K, par).
On the other hand, according to Lemma [3.4.10, the pair (K., "ps) is a quasi-G-cover of the pair
(K, "oar). Since n € N(pa)y I © Ne(ry(par), Lemma [3.3.5 implies that

[zo

Homan (nvapnx) = HOInKM (ana PM) 7é {0}

Since the restriction of "p, to K, 4 is "0,-isotypic, and the restriction of p,,; to Kz 4 is Opg-
isotypic, we deduce the claim. ]
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Axiom [3.4.T] also allows us to prove the following proposition that will be used to study the support
of the Hecke algebra attached to (K, pg).

Proposition 3.4.12. Let x € Agen and assume Aziom|3.4.1. Then the inclusion

N(pa)o,y € Lam (p2),

M

induces an injection
N(oa) g,/ (Nor0) gy 0 K0 ) = Ko\l (02)/ Ko

To prove Proposition we first record the following general lemma:s:

Lemma 3.4.13. Let U € U(M). Then we have
Neg(M)(F)NU(F) -U(F) = {1}.

Proof. Let n € Ng(M)(F), u € U(F), and u € U(F) such that n = wu. For any m € M(F), we

have

1 1

nmn ' = wumu " u 1 1

= au(mu'm ) (ma tm ™ )m.

We write
m' = (nmmn Ym™t e M(F) and o =u(mutm™) e UF).
Then we have
m'(mum ™) = /.
Since the natural map
M(F)x U(F) x U(F) = G(F)

is injective, we have m’ = 1. Hence, we obtain that n commutes with any element in M (F). In
particular, n is contained in the centralizer of Ap; in G(F'), that is equal to M(F'). Thus, we
conclude that

neMF)NU(F)-U(F)={1}. O

Proof of Proposition[3.4.13 Let ni,ny € N(pM)E,O]M and ki, ks € K, such that no = kiniks. It
suffices to show that nin, le K - We write
ké = nlkgnl_l S anxnl_l =Ky
By Axiom [3.4.1)[f)), there exists U € U(M) such that
K, NU(F)CKp:NU(F) and Kp,.NUF)CK,NU(F).
Then according to Axiom , we have

’I’LQ’I’LI1 = k1n1 k?z’flfl

= kK

€ K, Knz

= (K, NU(F)) Ky (K NU(F)) - Ko

= (K, NU(F)) - Knyz

= (KxNU(F)) - (Kno NU(F)) (Kpia NU(F)) Ky
= (Ko NU(F)) (Kpa NU(F)) K



Hence, there exists kjp; € K such that

nonykn € N(par)Y - Ky NU(F) - U(F) € Ng(M)(F)NU(F) - U(F).

[zo]ns

According to Lemma |3.4.13] we have ngnl_lkM = 1. Thus, we obtain that nlngl =ky e Ky, O

From now on, we suppose Axiom [3.4.3] in order to turn the injection in Proposition [3.4.12] into a
bijection.

Corollary 3.4.14. Let v € Agen and assume Azioms|3.4.1| and|3.4.5 Then the inclusion

N(PM)EO]M C Ig(r)(pz)

induces a bijection

N(oa) oy, (Noan)]

[xo]as

N Kar) = K\ oe)(px) K

Proof. The corollary follows from Axiom [3.4.3] and Proposition [3.4.12} O

Definition 3.4.15. We define the group W(pa)?

[zo] s

W (pm);,

[zo]ar

= N(pa0) ! (N(oa) oy, N KM )

Since Ky C M(F)g, fixes every point of Az, the action of Ng(M)(F)
action of W(pM)? [ OO Az

Zo

[zo]ar ON Az, induces an

Remark 3.4.16. Since the kernel of the action of Ng(M)(F)
the action of W (par)

on Ay, is the group M (F)y,,

[zolm
on A, is faithful if and only if

<
[zo] ar

N(pM)EO}MﬂKM:N(pM)O mM(F)wO'

[xo]as

In particular, if K3y = M(F),,, then the action of W (pa)Y ;  on Ay, is faithful.

[zo0]ns

Lemma 3.4.17. The group I/V(/)M)QQ acts on Ay, properly, that is, for all compact subsets Cy

[zo]ar

and Cy of Ay, the set {w € W(par)y | w(Cy) N Cy # 0} is finite.

[zo]ar

Proof. Since N(’OM)[Q;O]M C Na(M)(F)(zo],> and the quotient M (F)z, /K is finite, it suffices to
show that the group Ng(M)(F)z),, /M (F)z, acts properly on Az,. Let S be a maximal split
torus of M such that zg € A(G, S, F). Let Zg(S)(F')ept denote the maximal compact subgroup of

Za(S)(F). According to Lemma we have

Ne(M)(F) o) /M (F)ag = (Na(M)(F)g),, N Na(S)(F)) / (M(F)z N Ne(S)(F))

« (Ng(M)(F)zo1,; N Na(S)(F)) /Z6(S)(F)ept-

Then the lemma follows from the fact that the Iwahori-Weyl group Ng(S)(F)/Zq(S)(F)cpt acts
properly on the apartment A(G, S, F') of S. Although the fact is well known, we record the proof

[zo]ns
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of it for completeness. Since the finite Weyl group Ng(S)(F')/Za(S)(F') is finite, it suffices to
show that the group Zg(S)(F)/Zq(S)(F)ept acts properly on A(G, S, F). According to [KP23|
Proposition 6.2.4], for z € Zg(S)(F') and = € A(G, S, F), we have zo = x 4 v(z), where v(z) is the
element of X, (S)®zR defined by x(v(z)) = —ord(x(z)) for all x € X*(S). Thus, the claim follows
from the fact that v identifies the group Zg(S)(F)/Zc(S)(F)cpt with a lattice in X, (S) ®zR. O

Q
[zo]as
, i.e., the subspace of H(G(F), p,) consisting of functions whose support is contained

For w € W(pm)
N(pm);,

: [zolm
in K;nK,.

, we define H(G(F), pz)w to be H(G(F), pz)n for any representative n of w in

Proposition 3.4.18. Let x € Agen and assume Azioms|3.4.1 and|3.4.5 Then for eachw € W(pM)O

[zo]ar’

the subspace H(G(F), pz)w is one dimensional. Moreover, we have

weW(pM)EO]M

as a vector space.

Proof. Let w € W(pM)? . We fix a lift n of w in N(pp)y .- Then the map ¢ — ¢(n) defines

i ] To| M [zo]
an isomorphism of vector spaces

Since (K, pz) is a quasi-G-cover of (K, par), and ("Kz,"pz) is a quasi-G-cover of (Kas,"pnr),
Lemma |3.3.5| implies that

Hompg, i, ("pa, pz) = Hompg,, ("par, par)-

Since n € Ng(r) (par) and the representation pj is irreducible, the right-hand side is one dimen-

sional. The last claim follows from (2.2.2)) and Corollary [3.4.14 O

3.5 Intertwining operators and a basis of the Hecke algebra

We keep the notation from the previous subsection including the assumption of Axiom [3.4.1] but
we do not assume Axiom [3.4.3| until the last corollary, Corollary We will define a non-zero
element ¢, € H(G(F), pg)w for every € Agen and w € W(pM)O]M below. The element ¢, 4
will correspond to the composition of two intertwining operators via the isomorphism in .
The first intertwining operator

Oyla: indf(iF) (pz) — indf(;F) (py)

for x,y € Agen is defined as follows. We note that by Lemma and Axiom , for every

fe ind?(iF) (V,,) and g € G(F), the element 6,(k) - f(k~'g) for k € K, only depends on the

image (k] of k in the quotient K, y/ (K, + N K, ;). For f € indIG(iF) (V),), we define the function

26



by
(Oy2(1)) (9) = | Ky s/ (Kap N Ky )| > 0,(k) - f(k~'g).

[kleKy,+ /(Ko +NKy,+)

Here, we regard |K, /(K + N Ky )| as an element of C, and it is invertible by Lemmas and
B.438

Remark 3.5.1. If the characteristic £ of C is zero or the group K, 1 is a pro-p-group, then we can
write O, as

©ual0) 0) = [ 0,08) 10"

for f € indf(i ) (V,,) and g € G(F), where dk denotes the Haar measure on K, 4 such that the
volume of K | is one. In our application of the theory to the setting of [FOAM], the group K, +

will be a pro-p-group, see [FOAM, (4.1.3))].

Lemma 3.5.2. The map ©,,, defines a G(F)-equivariant map

ylz
. LGP . LG(F)
Oyt indp " (ps) — ind (py)-

Proof. We will prove that ©,,,(f) € indf{iF) (V,,) for all f e indIG(iF) (V). Since we have K, =

K - Ky 4 and py|k,, = pu, it suffices to show that

(©y12(f)) (karg) = par(kar) ((941:(f)) (9))

and

for all g € G(F), km € Ky, and by € Ky 4. Let g € G(F') and ky € K. Since we have
Ky C KyNK,y and the group K (resp. K,) normalizes K, 4 (resp. K, 1), the group K normalizes
K, + and K ;. Moreover, since K, normalizes K,  and the restriction of p, to K ; is 6,-isotypic,
the group K, normalizes ¢,. Hence, we have

(0y2(f)) (kng) = | Ky s/ (Ko N Ky )| 7" > 0, (k) - f(k  knrg)
[kleKy,+/(Kz,+NKy +)

Ky (Kos 0K O S 0,) - fUrk )
(kl€eKy,+/(Kz,+NKy,+)

=Ky 4/ (Kos N Ky )|~ > 0, (k) - par (k) (F (Bt k™ knrg))
kleKy +/(Kz +NKy +)

= par (k) (|Ky,+/ (Kpy NE, )| > 0y (k) - f(lek—lkMg>>
(kKleKy, +/(Kz,+NKy,+)

= p(kar) <|Ky,+/ (K N Ky i)l > 0y (k) - f((k;/llkkM)lg>>

(kleKy,+/(Kz+NKy,+)

— par(ka) (|Ky,+/ (K N Ky )| > 0, (karkky) f(k‘lg)>

(kleKy,+/(Kz,+NKy,+)
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= pa (k) <|Ky,+/ (Ko N Ky4)| > Oy (k) - f(k19)>

(KleKy,+/(Kz,+NKy,+)
= pur(kar) ((Oy12(£)) (9)) -

Moreover, the definition of O, implies that

ylz

(@y\x(f)) (k+g) = Qy(k+) : (@y|x(f)) (9) = py(k-i-) ((@y|az(f)) (g))
for all g € G(F) and k4 € Ky 4.
The claim that ©,, is G(F)-equivariant follows from the definition of it. O

We can also write ©,,,. as follows.

ylz
Lemma 3.5.3. Let x,y € Agen and U € U(M) such that

K,NUF)CK,NU(F) and Ky,NU(F)CK,NU(F).

Then we have
O @=[ g
KyNU(F)
for all f € indf{iF) (V,,) and g € G(F), where du denotes the Haar measure on the pro-p-group
K,NU(F) such that the volume of K, NU(F') is one.

Proof. Since the representation p, is trivial on the group K, N U(F') and the restriction of p, to
K, . is 0,-isotypic, the character 8, is trivial on the group K, + NU(F) = K, N U(F). Hence, by
Lemma [3.4.7, we obtain that

(Oye() (9) = 1Ky s/ (Ko NI, )7 > Oy (k) - f(k~'g)
(Kl€Ky,+/(Kaz,+NKy,+)

= (K, NU(F))/ (K. nU(F))[™ Oy(u) - f(u""g)

[u]e(KyNU(F))/(KNU(F))
/ 6,(u) - f(u"g) du
K,NU(F)

/ futg) du. O
KyNU(F)

Y
Corollary 3.5.4. Let 2,y € Agen and assume Aziom [3.4.1. For v € V,,, we define f, €
. G(F)
indg" 7 (V,,) as

~ Jra(9)(v) (9 € Ka),
fulg) = {0 (otherwise).

Then we have

((®x|y © @y\w) (fv)) (1) = |Ky/ (KN Ky)rl v,

where we regard |K,/ (K, N K,)| as an element of C. This element is invertible by Lemma[3.4.8

In particular, ©, is non-zero.
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Proof. By Axiom [.4.1|(5), there exists U € U(M) such that
K. NU(F)C K,NU(F) and K,NTU(F)C K,NT(F).

Then according to Lemma and Lemma [3.5.3] we have

(©ay20) (1) = [ (©,(£) (a)

K.NU(F)

/ / (w a1 dudu
+NU(F) KyﬂU(F

:/ / pz(u T (v) dudu
+NU(F) J KxNKyNU(F)

/ / v dudu
zﬂU(F K.NU(F

= |(K,nU(F (K NUFE) v
= |Ky/ (K ﬂKy)|_ v

We will prove a transitivity property of ©,,.
Proposition 3.5.5. We assume Aziom(3.4.1 Let x,y,2 € Agen such that
d(z,y) + d(y,z) = d(z, 2).

Then we have
O:1y © Oyle = Ofa-

Proof. By using Axiom [3.4.1|(5), there exists U € U(M) such that
K,NU(F) c K,NU(F) C K.NU(F)

and

K.NU(F)C K,NU(F)C K,nU(F).

Then according to Lemma [3.5.3] for f € indgip) (V,,) and g € G(F), we have

(0.1 0 0,0) () (9) = /K ey @) ()

= / / f(u;luzlg) duy du,
.NU(F) J K,nU(F)
= / / f(u;luzlg) du du,
K,NU(F) JK.NU(F)
[ ]t du.d,
K,nU(F) JK.NU(F)

— [ty du.
K.NU(F)
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We will prove a similar result under a weaker condition below (see Proposition [3.5.15)). To do this,
we define the notion of IC-relevance for an affine hyperplane H € §. The group generated by the

reflections across these K-relevant hyperplanes will form (under additional assumptions) a basis for
a subalgebra of H(G(F), pg,) that is isomorphic to an affine Hecke algebra. (See Theorem (3.10.10})

Definition 3.5.6. We say that an affine hyperplane H € § is K-relevant if there exists x,y € Agen
such that 9., = {H} and
Oy © Oyla ¢C- ldindf(iF)(pz) . (3.5.7)

We denote the set of K-relevant hyperplanes in $ by Hi_rel -

We will later see (in Corollary|3.5.20) that the action of N(p M)QQ ,on A, preserves the set Hi_rel.

[zo] n

Remark 3.5.8. By the definition of i o1, an element H € § is contained in $Hx_.e if and only
if there exists z,y € Agen such that $,, = {H} and holds. However, under additional
assumptions, we will see in Proposition below that if H € Hx_rel, then we have that
holds for all x,y € Agen such that $,, = {H}.

The K-relevant hyperplanes are those for which one has a more complicated description of ©,,00,,
for z and y on opposite sides of the hyperplane (see Lemmam Proposition (3.8.19). On the other
hand, if H € $ is not K-relevant, then, according to the definition combined with Corollary [3.5.4]
we have
—-1 .
Ouly © Oyl = [Ky/ (Ko N K[ - ldindf(iF)(px)
for all z,y € Agen such that $,, = {H}.

We now normalize the operators O, so that

norm norm __ :
e} =1
zy Gy‘x dindIG(;F) (pz)

in this case (see Lemma [3.5.11)). Recall that for an element ¢ = p" € C with n € Z, we write
/2= (pl/Q)n, where p'/2 denotes the fixed square root of p in C.

Definition 3.5.9. For x,y € Agen, we define the G(F')-equivariant map

norm ., : G(F . G(F

yfx : dei )(px) —HndK.E; )(py)
by

Zi);“m = |Ky/ (Kx N Ky)|1/2 ’ @y|;t

Lemma 3.5.10. Suppose that H € § is not K-relevant. Then for all x,y € Agen such that
Ny = {H}, we have
’Kx/ (KN Ky)| = |Ky/ (Kx N Ky)| .

Note that the image of this number in C is invertible by Lemma [3.4.8
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Proof. According to Corollary [3.5.4] we have

— -1 .1
S) Oyje = |Ky/ (Kz N Ky)| Idindif)(pz)

zly ©

and

@yl

xly

K,/ (K, NK )| idind,G(,(yF)(py)'
Hence, we have

@y‘x = @ym o id G(F) 2)

(p

= |Ky/ (Kq ﬁK y)| Oyl © (© zly OG)ylﬂf)

=K,/ (K: N Ky)| (© ylz © ﬂcly) © @ylx
y)

= |K,/ (K; NKy)| | K/ (K, N K )] Aid. ), 00y,
indg " (py)
= |Ky/ (Kx N Ky)| ‘Kx/ (Kx N Ky)rl @y\x-
Since ©,, is non-zero, we obtain the lemma. O

Lemma 3.5.11. Suppose that H € $) is not K-relevant. Then we have

norm o @norm — ldl

G
zly ylz ndK;F)(pgc)

for all x,y € Agen such that $,, = {H}.

Proof. According to Lemma [3.5.10] we have |K,/ (K, N Ky)| = |K,/ (K; N Ky)|. Then the claim

follows from combining this with Corollary and Definition [3.5.9 O
As above, we also obtain a transitivity property for the normalized intertwining operators @nr;m.

Lemma 3.5.12. Let x,y,2 € Agen. Suppose that
d(z,y) +d(y, 2) = d(z, 2).

Then we have
HOI'IH norm — norm
zly ylz z|z

Proof. By using Axiom [3.4.1|(5), we have U € U(M) such that
K. NU(F) C K,NU(F) C K, NU(F)

and
K.NU(F)C K,NU(F)C K,nU(F).

According to Lemma we have

1Ky / (Ke N K| = [(Ky NU(F)) /(K. NU(F))],
K-/ (Ky N K| = [(K:nUF)) / (K, nUF))],
K./ (Ka N KL = (K. NU(F)) /(K NU(F))]|-
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Thus, we obtain

Ky / (Ko 0 Ky)| K/ (Ky N K| = [(Ky NU(F)) /(K NU(E)] (K. N U(F)) / (Ky N U(F))]
= [(K;nU(F)) / (K. NU(F))|
=K,/ (K;NK;)|.

Combining it with Proposition we obtain the claim. O

The transitivity property holds under a weaker assumption that only takes the IC-relevant hyper-
planes into account. In order to state the weaker assumption and stronger result (see Proposition
3.5.15)), we first need to introduce some notation.

Notation 3.5.13. For ,y € Agen, we define the subset Hx_rel.z,y Of Hicrel DY
Nicrelizy = 1H € Hicrel | © and y are on opposite sides of H},

and write dlC—rel(xa y) = #ﬁlC—rel;a:,y-
Lemma 3.5.14. Let x,y,2 € Agen. Then we have

dK—rel($a y) + dlC—rel(ya Z) > dlC—rel(:L'a Z),
and the following conditions are equivalent:

(a) dlC-rel(xa y) + dlC-rel(ya Z) = dlC-rel(xa Z),
(b) ﬁIC—rel;z,y7f)lC—rel;y,z - jﬁlC—rel;az,za
(C) ﬁK-rel;x,y N ﬁlC-rel;y,z =0.

Moreover, the condition
d(z,y) +d(y, z) = d(z, 2)

implies
dicrel (%, Y) + dicral (Y, 2) = dicrel(, 2).

Proof. The first and second claim follow from the same arguments as in the proof of Lemma (3.2.1
The last claim follows from the fact $ic_relz,y = Hicrel N N y- L]

Proposition 3.5.15. Let z,y,z € Agen and assume Aziom|[3.4.1. Suppose that
dlC—rel(xa y) =+ dlC—rel(yv Z) = dlC—rel(‘rv Z)-

Then we have
norm norm ___ norm
O%y °Oy = O

Proof. We use induction on d(x,y). If d(x,y) = 0, we have

d(z,2) =d(y,z) = d(z,y) + d(y, 2).
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Hence, the proposition follows from Lemma [3.5.12) Suppose that d(z,y) > 0. We take 2’ € Agen
such that d(z,2’) =1 and d(z,2’) + d(2',y) = d(x,y). According to Lemma [3.5.12] we have

NG IR C (3.5.15a)
Recall that we are assuming
dicrel(z,y) + dicrel (Y, 2) = dicral (2, 2). (3.5.15b)
On the other hand, since d(z,z’) + d(2',y) = d(z,y), according to Lemma we also have
dicrel(z,2') + dicrel (7, y) = dicrel(,y). (3.5.15¢)

Combining ([3.5.15bf) with (3.5.15¢)), we obtain
dlC-rel(xy Z) = dlC-rel(x y) + dlC rel(ya )
= dlC-rel( ,) + dlC-rel(:E y) + dlC rel(ya )
> dlC-rel( z,T ) =+ dlC-rel(x Z)
> dlC—rel(:E )

Since all of the inequalities above are thus equalities, we have

dlC—rel($/7 y) + dlC—rel(ya Z) = dlC—rel(xla Z) (3515(1)
and
dicrel (7, 2") + dicrel (2, 2) = dcrar(w, 2). (3.5.15¢e)
Then (3.5.15d)) and the induction hypothesis imply that
Ql(;m Iy‘f;m = E“O;,m (3.5.15f)
Combining (3.5.15al) with (3.5.151), we have
HOI'm norm ___ @norm norm norm norm norm
zly ylo zly yla’ |z z|a! |z -
Thus it suffices to show that @nf’;m 0o O = O™ Let H C Ay, denote the unique affine

hyperplane in $ such that x and 2" are on opposite sides of H. If 2’ and z are on the same side of H,
then we have $); ,» N9, , = 0. Then, according to Lemma we have d(z, 2')+d(2, z) = d(z, 2).
In this case, the claim follows from Lemma Suppose that 2’ and z are on opposite sides of
H. In this case,  and z are on the same side of H. Hence, we obtain £,/ , N, . = (), equivalently,
d(z',z) + d(x, z) = d(2', z). Then, according to Lemma we have

norm o @norm _ nor/m. (3.5.15g)

zlx z|x! zlz

We also note that H & $xre1- Indeed, if H € Hycel, we have

He S;Jrel;x,ac’ N 573rel;z’,z 7£ @7

contradicting (3.5.15€¢]). Hence, we obtain that H is not K-relevant. Then, according to Lemmal3.5.11
we have

g(ﬁlm o ;ﬂgm =id ndS) () ° (3.5.15h)
Combining ({3.5.15g) with (3.5.15hl), we obtain
norm , gnorm __ qynorm norm , gnorm __ qynorm ]
z|la! |z zlz x|z’ e T Vz|z
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We record a corollary of Proposition [3.5.15] that is a generalization of Lemma and will be
used in Section [L.5] below.

Corollary 3.5.16. Let z,y € Agen such that dic_rei(x,y) = 0 and assume Aziom m Then we
have
K/ (K0 Ky)| = |Ky/ (KN Ky)| .

Proof. Since dicyel(x,y) + dicrel(y, ) = dicrel(z,2) = 0, Proposition [3.5.15 implies that @g‘fyrm o
nerm — idin 4SO oy - Combining this with Corollary [3.5.4] and Definition[3.5.9) we obtain that
Ky ©

ylz

Ko/ (Ko 0 )| Ky ) (K 0 Y)Y K/ (K )T =1
Thus, we obtain the claim. ]

Q@

Now we construct the non-zero element ¢, € H(G(F), pz)w for z € Agen and w € W(pM)[xo]M‘

In order to do so, we make the following choice.

Choice 3.5.17. We fix a family of non-zero elements

v
[zolar

T = {Tn € Homg,, ("0ar; P20)} e n(pay)

that satisfies the following conditions:
(1) We have Ty =id,,,.

(2) For all n € N(pa)y, , and k€ Ky N N(pm)? o, we have Ty = T}, 0 par(k).

[zo] [xo] as

We will later refine our choice of 7. See Choices B.10.3] and B.11.5
Let x € Agen and n € N(pM)Q . According to Axiom 3.4.1, the pair (Kz, pne) 1S a quasi-

[xo]as

G-cover of (K, par). On the other hand, according to Lemma [3.4.10, the pair (K., ;) is a
quasi-G-cover of (Kys,"ppr). Hence, according to Lemma we have

T, € HomKM (an’ PM) = Homan (npx, pmc) .

This allows us to define a second type of intertwining operator, whose composition with an appro-
priate ©}P"" will allow us to define @y € H(G(F'), pr)w in Definition 3.5.23 below.

|z

Definition 3.5.18. For x € Agen and n € N(pM)?;O}M we define the isomorphism
by

Can(f): g— Tn(f(n_lg))
for f € indi") (V,,) and g € G(F).

Lemma 3.5.19. Let x,y € Agen and n € N(pM)? 1o+ Then we have

zo

norm norm

@ny|ngc O Cyn = Cyn © @y|x and nylnz © Cz,n = Cyn © Dy 1y
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Proof. By the definitions of ©,,,,, and ¢, ,, we have for f € indg" (V,,) and g € G(F) that

((@nymm o C:r:,n) (f)) (9) = |Kny,+/ (an,+ N KnyHr)rl Z eny(k) ) Tn(f(n_lk_lg))-
(k]€Kny,+/(Knaz,+NKny,+)

On the other hand, by the definitions of ©, and ¢, and Axiom 3.4.1@3), we have

((eym ©Oyp) () (9) = T <|Ky,+/ (Koot N Ey )| Y. (k) f(k_ln_lg)>

(kleKy,+/(Kz+NKy,+)

= |Kny,+/ (Kn:a—‘r N Kny,-i—)rl Z ey(nilkn) : Tn(f(nilkilg)»
(K]€ Kny,+/(Kna,+ NKny,+)

Now the first claim follows from Lemma [3.4.11] and the second claim follows from the first claim,

Definition and Axiom |3.4.1{(3]). O

Corollary 3.5.20. Assume Axiom |3.4.1| and let H € $Hcrel and n € N(pM)?ZO]M. Then we have
n(H) S 57)K—rel'

Proof. According to Axiom [3.4.1)([2), we have n(H) € $. We will prove that n(H) is K-relevant.
Since H € $ic_rel, there exists x,y € Agen such that 9, , = {H} and

Oajy 0 Oyja £ C- 1dindf<f)(pz) '
According to Lemma [3.5.19] we have

-1 -1
Onylnz = Cym © Oyjz © Can and  O,uny = Con © Oy 0 Cyn -

x|y
Hence, we obtain that

— -1 -1\ _ -1
6n:t|ny © eny|ngc - (Cac,n © Gx\y O Cyn ) © (Cy,n o @y|g: O Cxn ) = Cxn O @z|y © ®y|x OCxmn -

Since
Oy © Oyl ¢C- idindiim(pz)’

we have

@nz|ny o @ny|nx ¢ C- idindIG(;I;) (pna)
Since Hpzny = n(Hzy) = {n(H)}, we conclude that n(H) is K-relevant. O
Lemma 3.5.21. Let x € Agen and n € N(pM)[ZO]M. Then the isomorphism cg, only depends on
the image of n in W(pM)[ZO]M.
Proof. Let n € N(pM)EO]M and k£ € N(pM)EO]M N Kyr. We will prove that ¢y, = ¢z k. Since

Ky C M(F)g, acts trivially on Ay, we have nkx = nx. Let f € indf(iF) (V,,) and g € G(F).
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Then we have

(ot (F))(9) = Tur(f(k'n""g))

= (Tno pu(k)) (p=(k~1)f(n"g))
= (Tw o pur(k)) (pm (k™) f(n"1g))
=Tu(f(n"'9))
= (can(f))(9)-
Thus, we obtain the lemma. O

As a consequence of the lemma, we may write
Cew = Cxn (3522)

for & € Agen, w € W(par)y, and n any lift of w in N(pM)E ]

[zo]ar’ ola”

Definition 3.5.23. For z € Agen and w € W(pM)EO]M we define the element

®, ., € Endg(p) (mdiﬁf ) (m))

by
norm

(I)l":w = Cy—lzw © Fy-lg(z

and let ¢, 4, denote the element of H(G(F'), p,) that corresponds to @, , via the isomorphism in

(2.2.3). We write @y, = @z and @y = Py 4.

Remark 3.5.24. Since ©7”7" is non-zero and c,-1,,, is an isomorphism, we obtain that ®,
and ¢, are non-zero. We Wih see below in Corollary [3.8.13| that under additional assumptions
the endomorphism ®; ,, is an isomorphism.

Remark 3.5.25. The elements ®, ,, and ¢, ,, depend on the choice of the family

T ={T, € Hompg,, ("prr, pm) b e n (PM)[ZOJM

made in Choice [3.5.17 as follows. Let w € W (pns)y

[zolm
for all lifts n of w in N(pM)EO}M, then the elements ®, ,, and ¢;, are replaced by c¢- ®,, and
¢ Yzw, respectively. We have chosen 17 = id,,, so that the endomorphism ®, ; is the identity map

and ¢ € C*. If we replace T, with ¢- T,

PM
on indg(zF)(pm) for every z € Agen.

Lemma 3.5.26. Let v € Agen and w € W(pM) Then we have supp(pzw) = KywkKs.

[zo]ar”
Moreover, if n is a lift of w in N(pa)y ., then (pzw(n))v = |Ky/ (Kyz N K)|"Y2 T, (v) for all

[zo] s
vel,,.
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Proof. We fix a lift n of w in N(pM)go]M. For g € G(F) and v € V,,, we obtain using (2.2.4) and
Axiom that

(2,0(9)v = (Paw(fo)) (9)
= ((cumraw 0 O2,)(1) (9)
= T, (051, (£) (7))
= |Kw—1az/ (Kx N Kw—la:)|71/2 Tn( Z ew_lx(k) ’ fv(k_ln_lg)>

[k]Ewalan/(KlﬁrmKw*lan)

= |Kw—1x/ (Kﬂc N Kw—lx)rl/Q Tn( Z ew_lx(k) ’ fv(nl(nknl)lg)>

FeK 1, 4/ (Kot NK -1, )

— K,/ (Kue N K,)| Y2 Tn< > Op-15(n"kn) - fv(nlklg))

[k]eKz,+/(wa,+mKw,+)

Since f, is supported on K, the sum vanishes unless g € K, (nK, C K,wK,. Hence, since ¢,
is non-zero, we obtain that supp(ys ) = KywK,. Moreover, we have

Z Op-1,(n1kn) - fo(n k7 In) = v,

[k]eKw,+/(sz,+an,+)

which yields the second claim. O

Corollary 3.5.27. Let v € Ay, and assume Azioms|3.4.1 and[3.4.3. As a vector space, we have

H(G(F)7Pz) = @ C- Pr,w-

wEW(pM)[Zo]M

Proof. The corollary follows from Proposition [3.4.18] and Lemma [3.5.26 O

3.6 Relations in the length-additive case

We will now study the structure of the Hecke algebra H(G(F), p,) as a C-algebra. In this subsec-
tion, we investigate the relations in the length-additive case for a length that we define below in
Definition [3.6.3] We keep the notation from the previous subsection and assume Axiom (but

not Axiom [3.4.3). Let m,n e N (pM)[Q;O]M. Recall that we have fixed an isomorphism

T, € HOHIKM (an,pM) C Endc(VpM)

in Choice Since the subspaces Homg,, (""par, "par) and Hompg,, ("par, par) of Ende(V,,,)
are equal, T}, is also an element of Hompg,, (""par, "par). Then we can form the composition
T o Ty, € Hompg,, (""par, par). Since dime (Hompg,, (""par, par)) = 1, the isomorphisms ), o T),
and T},, differ by a non-zero scalar, and it is straightforward to see that this scalar depends only

on the images m and 7 of m and n in W(pM)EO}M.
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Notation 3.6.1. We denote by

X

MT3 W(PM)E;O]M X W(PM)[ZO]M —C

the unique map that satisfies
T (m, ) - Ty
Standard arguments of projective representations imply that u” is a 2-cocycle. We note that the

2-cocycle 7 depends on the choice of a family 7 = {T,, € Homg,, ("pur, pM)}neN(pM)o , made
[zol

in Choice but its cohomology class does not. We will see in the next lemma that the 2-
cocycle also determines the composition of the homomorphisms ¢,-1, ,,, which we will then use to
study the composition of the operators ®,,.

Lemma 3.6.2. Let x € Agen and v,w € W(pM)? 1y- Then the homomorphism

o
. G(F .. G(F
Cy=1g,p O Cy—ly—lguw € HomG(F) (HldKEU_)lv_lz(pw*lv*la:% lnd[(i )(px)>

is equal to p7 (V,W) * Cy—1y—14 pao-

G(F)

Proof. We fix a lift m of v and n of w in N (pxy) cFor feindg | (py-1p-1,) and g € G(F),

we have

Q
[zo] s

(ot 0 Cwtotzw) () (9) = T ((cw10-120(f)) (M1 9))
=T (Tn (F(n"'m™9)))
= (I o Ty) (f(nilmilg))
= NT(ma n) - Tmn (f(nilmilg))
= (1" (v,w) - cw1y-150u0 (1)) (9)-

Thus, we obtain the lemma. ]

We equip the group I/V(pM)E9 |, With the following length function.

Zo

Definition 3.6.3. For w € W(pys) , we define

V)
[xo]

elC-rel(w) = d/C-rel(l'o, w_l.%'()).

Proposition 3.6.4. Let v,w € I/V(pM)E9 It and assume Aziom|3.4.1|. If

z0

ElC-rel(Uw) = ElC-rel(U) + ElC-rel(w)a

then we have
®,P, = MT(v,w) - Dy
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Proof. We have

dic-rel (0, W 20) + dicrer (W™ wo, w v @) = dicvel (o, W @0) + dic-rel (0, v )
= dic_re1(z0, v 20) + dicrel (20, W 20)
= licrel (V) + Lxcrel(w)
= licrel (VW)

= dicrer(z0, w™ v xp).

Hence, according to Proposition we have

norm norm _ norm
w—lv—lzglw—lzg © @ —lzglzo — @ —ly=lzglzo"
On the other hand, according to Lemma [3.5.19] we have
norm _ norm
v~ lzg|zo O Cy—1zgw = Cw—lv—lzgw © w—ly—lgglw—lzg"

Thus we obtain using Lemma [3.6.2]

_ norm norm
©y oy = (CU_lCL"O:U © @v*110|x0') ° <Cw_1m0’w ° @ 120|ZO)

_ norm norm
= Cy—lgow © ( v=1lzg|zo © walfCOvU’) © w=lzolzg

_ norm norm

= Cy—lggw © (cw—lv—la:o,w o w—ly—lxo\w—lx()) ° wlzg|zo

_ norm norm

= (Cv*lxo,v © Cw*lv*lwo,w) © ( wlv—lzglw—tzy © wflfco\:vo)

_ T norm

= (u (v, w) - cw_lv_%o’vw) 00O w-lv-1zo|zo

_ T

T (0.w) - D =

3.7 The structure of the indexing group

We keep the notation from the previous subsection and assume Axioms [3.4.1] and [3.4.3] In this
subsection, we will introduce an additional axiom about W(pM)EO}M containing a nice subgroup,

Axiom |3.7.1} that allows us to deduce that W(pM)[Q;O ., Is a semi-direct product of a normal affine
Weyl group with the subgroup of £x_ e-length-zero e]lements. This generalizes the decomposition
that Morris ([Mor93, 7.3. Proposition]) obtains for his group W (o) (using his notation) that indexes
a basis for the Hecke algebra of a depth-zero type attached to a parahoric subgroup.

For H € $, let sy denote the orthogonal reflection on A;, with respect to the affine hyper-
plane H. We define Wic,e to be the subgroup of the affine transformations of A,, generated by
{SH ’ H e SﬁlC-rel}a Le.,

Wicrel = (sH | H € Hicrel)-

Axiom 3.7.1. There exists a normal subgroup W (pas)ag of W(pM)[ZO]M such that the action of

W(pM)EO}M on A, restricts to an isomorphism
W(pM)aff — WIC—rel-
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One way to check that the axiom is satisfied is via the following lemma.

Lemma 3.7.2. Assume Axioms|3.4.1] and[3.4.5, and suppose that there exists a normal subgroup
G’ of G(F) such that

G'N N(pM)go LN Ky =G 0O N(pu)p, N M(F)a

[zo]

]

and that for all H € Hi_rel, there exists an element

shy € (G’ N N(pM)[zO]M> / (G’ AN(pa Dy, 0 KM>
such that the action of sy on Ay, agrees with the orthogonal reflection sg. Then Aziom 18
satisfied with

W(pam)ast = (S5 | H € Hicrel)-

In the depth-zero setting, i.e., in Section [5] we will apply this lemma in the case that the normal
subgroup G’ is the kernel of the Kottwitz homomorphism to prove that Axiom is satisfied, see
Proposition [5.3.5, In the setting of [FOAM], we will observe that W(pM)Ef Tar there is the same as

o
the corresponding group in a depth-zero setting and the relevant hyperplanes are a subset of the

hyperplanes in the depth-zero setting, so that Axiom in the setting of [FOAM] follows from
the result in the depth-zero setting, see [FOAM]| Proposition [4.3.9].

Proof of Lemma[3.7.2 By Remark and Corollary [3.5.20] the group
(G N N(pan) gy, )/ (GO N (oar) 0 Kou)

Q@
[xo] s z0)

acts faithfully on A, through affine transformations and preserves $x_re1. Thus we can identify the

former group with a subgroup of the group of affine transformations of A, preserving Hx_re1. Since

the latter contains the group Wi_yel = (sg | H € Hirel) as a normal subgroup, the claim follows
. . Q @

from the assumption about the ex1sten(;:e of sy €(G'n NépM)[CUO]M)/(G/ N N(pM)[IO]M N Ky)

and the observation that (G’ N N(pM)[xO]M)/(G’ N N(pM)[xO]M N Kj) is a normal subgroup of

W(pM)[?CO}M' -

We will now show that the group W (par)ag of Axiom is an affine Weyl group, which explains
our choice of notation. For H € §), let ay denote an affine functional on A;, such that H =
{x € Ay, | ap(z) =0}. We write Day for the gradient of ap, which is a linear functional on
X«(Ap) ®z R. The subspace

ker(Dag) = {v € X«(An) @z R | Dag(v) =0}
of X.(Ay) ®z R only depends on H and not on the choice of ar. We define the subspace phorel
of X*(AM) ®z R by
yhorel — m ker(Dagr).
HeﬁK—rel

We define the affine space A to be the quotient affine space A,/ V&rel and write its vector

space of translations as
Vicorel = (X* (AM) X7, R) /V’C'r61.
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According to Corollary [3.5.20, the action of W(PM)[QZO]M

W(pM)EO}M on Agrer- Let (VX)L denote the orthogonal complement of VX in X, (Ay) @z R
with respect to the previously fixed Ng (M )(F)-invariant inner product ( , )ar on X, (Ay) ®z R.
Then the natural projection X,(Apr) ®z R — Vi_ye restricts to an isomorphism

on Az, induces a well-defined action of

(VEreh L 2 v . (3.7.3)

We define an inner product on Vi by restricting the inner product ( , )as to (VX)L and then
transporting it to Vi_je via the isomorphism in (3.7.3). This turns the affine space Ax. e into a
Euclidean space. We identify an affine hyperplane H € i1 with its image on Ag_rel-

Proposition 3.7.4. Assume Axzioms|3.4.1],(53.4.5 and|3.7.1. Then there exists an affine root system
I'(par) on Axrel whose vanishing hyperplanes are $ic_yel. In particular, the action of W (par)ag on
Ajc_rel induces an isomorphism

W (par)asr = Wicrel = War(T(par)),

where Wag(T'(par)) denotes the affine Weyl group of T'(par). (We allow the affine root system to be
empty, with the associated affine Weyl group being the trivial group.)

Proof. We assume that Ax_.e has dimension at least one because the statement is otherwise trivial.
According to [Bou68, Chapter V, Section 3.10, Proposition 10] and the proof of [Bou68, Chapter VI,
Section 2.5, Proposition 8], it suffices to check the following conditions (see also the proof of [Mor93|
2.7 Theorem (b))]):

(1) For any w € Wi_yel and H € $Hic_yel, we have w(H) € H_rel-
(2) The group Wic,q acts properly on Ax _yel-

(3) For any H € $x_rel, there are infinitely many H' € $x_re1 that are parallel to H.

Condition follows from Corollary and Axiom and Condition follows from
Lemma and Axiom It remains to prove Condition . Let H € Hxre. We fix
an affine functional a on Ay, such that H = {z € A, | a(x) = 0}. We write a for the gradient of
a. Let t € Ap(F). Since t € Ay (F) C N(pM)[Q;O}M, we have t(H) € i by Corollary [3.5.20
We define the element v(t) € X, (Ay) ®zR by x(v(t)) = —ord(x(t)) for all x € X*(Apr). We note
that the set {v(t) |t € Ay (F)} is a lattice of full rank in X, (An) ®z R # {0}. Hence, we can take
t € Ap(F) such that a(v(t)) # 0. According to [KP23, Proposition 6.2.4], we have t "1z = x —v/(t).
Hence, we obtain that

t(H) = {tz € Ay, | a(z) =0} = {z € Ay | a(t™tz) = 0} ={z € Ay | a(z — v(t)) =0}
={z € Ay, | a(x) — a(v(t)) =0}.
Thus, we obtain that t(H) is parallel to H. Moreover, since a(v(t)) # 0, by applying the same

calculations to ¢" instead of ¢ for n € Z, we obtain that the affine hyperplanes ¢"(H) with n € Z
are all pairwise distinct, contained in $x_ro, and parallel to H. ]

We now construct a complement to W(pas)ag in W(pM)[QiO]M.
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Notation 3.7.5. We call the connected components of the complement of Hyc_re1 in Ax_rel chambers
and denote by Ci_e the chamber of Ax_o1 that contains zg+ V™. We define the subgroup Q(par)
of W(par)i,,, by

[xo] s

onr) = {w e Wip)y,

[zo0]ns

w(CIC—rel) = CIC—rel}-

Note that Q(pas) consists precisely of the length-zero elements of W(pM)EiO}M with respect to the
length £x_.e introduced in Definition [3.6.3

Proposition 3.7.6. Assume Axioms[3./.1],[3.4.5 and[3.7.1. Then we have

W (pm)7y,

[zo]ns

= Qpm) X W(pn)ast-

Proof. According to Proposition the action of W (pas)ag on the set of all chambers of Ay e
is simply transitive. Hence we obtain that

Qpar) "W (par)as = {1}

and
W (pa) oogar = oar) - W(pas asr-
Since W (par)ag is a normal subgroup of W(pM)EO]M, the proposition follows. O

3.8 Simple reflections and quadratic relations

In this subsection, we continue our study of the structure of the Hecke algebra H(G(F), psz,). In
Section we investigated the relations of basis elements of the Hecke algebra in the length-
additive case, see Proposition [3.6.4l In this subsection, we will study the relations in the basic
non-length-additive case, the case of (simple) reflections, introduced in Notation below. This
will require one further axiom, Axiom [3.8:2] below, which ensures that the Hecke algebra element
®, corresponding to a simple reflection s satisfies a quadratic relation. This additional axiom also
allows us to prove that the endomorphism ®,, for w € VV(pM)(Q is invertible, see Corollary

[zo]ar

We keep the notation from the previous subsections and assume all the above axioms, i.e., Axioms
[3.4.1} [3.4.3} and [3.7.1}

Notation 3.8.1. We denote by Si_;e1 C Wirel the subset of simple reflections corresponding to
the chamber C ., i.e., the reflections across the walls of Cx_e1. Using the isomorphism of Wic a1
with the subgroup W (pas)ag of VV(pM)[QQ Lar from Axiom [3.7.1], we also view Si._;el as a subset of

Zo

W(pM)[?CO}M. For each s € Si_rel, we denote by Hg € Hre1 the corresponding wall of Ci_rq1.

We note that the restriction of the length function fx_,) to W(par)as agrees with the length function
of the Coxeter system (W (par)aft, Sicrel). We will now impose one more axiom that guarantees
that the Hecke algebra elements supported on double cosets of lifts of simple reflections satisfy a
quadratic relation.
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Axiom 3.8.2. For any s € Si.rel and @ € Agey such that 9, o, = {H,}, there exists a compact,
open subgroup K7, , of G(F) containing K, such that

W(orD) oy 2 (N(oan) 2y, VK ) [ (Npan)y,, 0 K ) = {18},

Remark 3.8.3. In the depth-zero setting discussed in Section |5, the axiom is satisfied for the
group K o = Ky - G(F)p for h € Hy the unique point for which h = z +t - (sx — z) for some
0 <t < 1. For the more general setup in [FOAM] the axiom is satisfied for K ; = K} as defined
in [FOAM, Equation (4.1.3)]. This is proven in Corollary of [FOAM].

Notation 3.8.4. For H € Hxre and & € Agen, With 9, 5,0 = {H}, let Ky, = (K, sg). Here,
we regard sg € Wice as an element of W(pas)ag C I/V(pM)QQ via the isomorphism in Axiom

[xo]ar

Remark 3.8.5. If a group K, , exists as in Axiom then we obtain that the axiom also holds
for the group K, in place of K:'&s. This is because K, s is an open (hence closed) subgroup of

K s, and thus is compact and

{151 € (N(an) Ty, N Kas) / (Noany,, 0K

- (N(pM)[?CO]M N K;,S> / <N(pM)gO]M N KM> = {1,s).

Thus, we conclude that (N (par)?

[xo] s

N Kx,s) / (N(PM)EO}M N KM> ={1,s}.

The reason why we state Axiom with an arbitrary subgroup Kj ; rather than with K , is
that in Section [4] below, in order to obtain an isomorphism between different Hecke algebras, we
will state that Axiom is satisfied for a specific choice of K/, ., see the beginning of Section

and Theorem [£.4.8]

787

Remark 3.8.6. While Axiom only concerns simple reflections, it implies the same result for
other reflections. More precisely, let H € Hirel and « € Agen such that 9, 5, = {H}. According
to [Bou68, Chapter V, Section 3.1, Lemma 2], there exists w € W (pas)agr and s € Sk_rel such that
w(H) = Hg and hence sy = wtsw. Thus, from Axiom and Remark [3.8.5, we obtain that
the group K, s, = (Kz,su) = w 1Ky sw is a compact, open subgroup of G(F) and

Q v
(N o)y, 0 Ko ) £ (N o)y, 1 B ) = {11
We remind the reader that we have shown in Section in particular around Diagram ([2.2.7)),

how to view Endg, , (indflz‘sH (pz)) as a subalgebra of Endg (indf(iF)(px)).

Lemma 3.8.7. Let H € Hicyel and x € Agen such that 5,0 = {H}. Then the elements ®, 5,
and @51 form a basis of Endg, , . <ind§z’sH (pw)>

In particular, we have
dime (Endr, .,, (indic " (p2) ) ) = 2.
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Proof. According to the isomorphism in (2.2.6), it suffices to show that the elements ¢, s, and

g1 give a basis of H(K, s, pz). According to Proposition [3.4.18| and Lemma [3.5.26, a basis of
the space H(Ky.s,,, pz) is given by the set

{oen |0 € (W), 0 Ke) (M 0a0)24, 0 i)}

Thus, the lemma follows from Remark O

Corollary 3.8.8. We assume Azioms|3.4.1,(3.4.5,13.7.1, and|3.8.4 Let H € $xrel and x € Agen
such that 9 s, = {H}. Then there exist py m, gz, m € C such that

((pm,sH)2 = Pz, H * (I)x,sH + qz,H * (I)a:,1~

Proof. Since ®; 5, belongs to the subalgebra Endg, , (indﬁi’sH (p2)) of Endg(r) (ind?(iF) (pz)), the
same is true of (®, s, )% Thus, the corollary follows from Lemma m O

The remainder of this subsection is concerned with strengthening the statement of this Corollary by
replacing the condition $, s, = {H} by the weaker condition i rel,z,s;z = {H} and by proving
that the coefficients p, i and ¢,z in the above quadratic relation are non-zero and independent
of the choice . While ¢, gy # 0 follows from a standard observation about the endomorphism
@ﬁ’sfglz o @gzrﬁm for a general H € $) and x € Age, such that $,,,. = {H}, to prove p, g # 0,
the condition H € $Hi_rq is essential. We remind the reader that the condition H € $i_.o was
defined by the existence of ,y € Agen With 9,y = {H} and O, 0 ©,, a non-scalar operator on

indf(iF) (pz)- In order to prove p, i # 0, we will show that if ©,, 0O, is a non-scalar operator for
some z,y € Agen With 9., = {H}, then the same is true for all such z,y € Agen, and even for all
x,y € Agen satisfying only the weaker condition $x_re1.zy = {H }, see Proposition Once we
know that the coefficients p, g and ¢, g are non-zero and independent of x, we will refine our choice
of T ={T,, € Hompg,, ("prr, par)} e N(par)?,  that entered the definition of the endomorphism @,

[zolns

to obtain a quadratic relation (®4)% = (gs — 1) - @5 + g - 1 with g5 € C* ~ {1} for every simple
reflection s, see Proposition [3.8.23

We begin by proving that g,y is non-zero and independent of x, for which we first record a
consequence of Lemma [3.5.19| and Lemma [3.6.2

Lemma 3.8.9. Let H € Hicrel and x € Agen. Then we have

norm norm

2
(‘bx,sH) = MT(SHa SH) " Malspw 0 sgz|T:

Proof. We write s = sy. Since s> = 1, Lemma [3.5.19 and Lemma imply that

2 norm norm
((PCIZS) = Cs—1g.5 0 S} O Cs-1g.40° ©

s~lz|x s~lz|x
= Comla,s © Cays © OT1, 0 O2),
= HT(S7 s) - Ca,1 © fpu\);inlz © ?gﬁrﬁx
= 7 (5,5) - O35, 0 O,
— T (s.5) - O 0 @ 0
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Lemma 3.8.10. We assume Azioms|[3.7.1]), ?.2.31, 371, and :?.3.2. Let H € Hxcrel and x € Agen
such that g s, = {H}, and let g m be as in Corollary 38% Then ¢z u = v (sg,sg). In
particular, the scalar g, g is invertible and independent of x.

Proof. We write s = si. For v € V,,_, we define the element f, € indIGéIF) (V) by

filg) = {px(g)(v) (9 € Kz),

0 (otherwise).
Then, according to Corollary we have
((Osfsz © Osafe) (f0)) (1) = | Ko/ (Kx N Kii)| ™' v
Hence, we obtain from Definition and Axiom [3.4.1|(3) that
(O3 0 O () (1) = [Ka/ (Ko N Kio)['? | K/ (K N Koo) |70 = 0.

Combining this with Lemma [3.8.9] we obtain that

((22) (£2)) (1) = pT(s,5) - v. (3.8.10a)
Substituting (P, ) by pe.H - Pe.s + @u. i - Pp,1 in (3.8.10a)), we obtain g, g -v = 17 (s,8)-v. Thus,
Gt = 11" (5,8) € C*, as desired. =

Corollary 3.8.11. We assume Axioms[3.7.1], :?.4.31, 3.71), and :?.E.Z. Let H € $icrel and € Agen
such that 9z s, = {H}. Then the endomorphism ®, 5, is invertible.

Proof. Recall from Remarkmthat ®,1 is the identity endomorphism. Hence by Corollary [3.8.§]
and Lemma |3.8.10} the element ¢ H (‘I)z,SH Pa.i - Pp1) is a left and right inverse of ®,,,. O

From this we can deduce that more generally all endomorphism @, ,, with w € VV(pM)EQ

are
o] M
invertible as well as the operators ©,,, for all z,y € Agen that we used to define @ .

zly

Proposition 3.8.12. We assume Azioms[3.4.1,[3.4.3,[3.71, and[3.8.4 Let x,y € Agen. Then the

operators ©,, and @Zf;m are isomorphisms.

ylz

Prolcif. It suffices to show that @Zf;m is an isomorphism. If d(x,y) = 0, according to Lemma [3.5.12
we have

norm norm _ qunorm _ ;1

— norm norm _ gnorm _ ; d
zly ylz |z

waf () A4 Oy 0 Oy = Oy Dioy)

Hence @Z‘Oxrm is an isomorphism. Suppose that d(x,y) > 1. According to Lemma [3.5.12) we can

take points
T =T,T2,23,...,0 =Y € Agen

such that d(z;,z;41) =1 for all 1 < < ¢, and

norm — norm o--- norm
ylx Te|Ti—1 x|wy”
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Thus, to prove the proposition, it suffices to show that @gf;m is an isomorphism for all z,y € Agen

such that d(z,y) = 1, so we assume d(z,y) = 1. Let H C A, denote the unique affine hyperplane
in $) such that x and y are on opposite sides of H. If H is not K-relevant, Lemma [3.5.11] implies
that @Zf’;m is an isomorphism. Suppose that H is C-relevant. We write s = sp. Then there exists

z’ € Agen such that d(z,2") = d(y, sz’) = 0 and d(2’, sz’) = 1. By Lemma [3.5.12 we have

norm _ norm norm norm
yle T Yyl|sz’ sx! |z’ |z -
We already showed that the operators g?ﬁcm and nfrf,‘ are isomorphisms. Moreover, since g,
is an isomorphism, it follows from Corollary [3.8.11f that the operator @noﬂm = (Cspr 5) Lo ®p, is
x/ ) )
also an isomorphism. Thus @gfxrm is also an isomorphism. O

Corollary 3.8.13. We assume Azioms|3.4.1},(3.4.5,|3.7.1, and|3.8.9. Forx € Agen andw € W(pM)Q

the endomorphism ®, ., is invertible.

Proof. The claim follows from the definition of ®,,, as cy,-15, © O | where c,-1 is an
’ ) w QC|J,‘ w x,w
isomorphism and Proposition |3.8.12 O

In order to show that the coefficient p, g in the quadratic relation in Corollary is non-zero
and independent of z, we need a few more lemmas.

Lemma 3.8.14. Let H € $Hicrel and let z,2',y € Agen. We assume that the points x and ' are
on the same side of H and Hirelwy = {H}. Then we have

norm norm _ norm norm norm ___ norm
via 0Oy =Gy and Oy o Opp" = Oyp
Proof. Since the points z and z’ are on the same side of H and $x.relwy = {H}, we have

Nirelizz’ N Hicrelizy = 0. Then Lemma [3.5.14] implies that direl(2', 2) + dicrel (%, y) = dicrer (2, y)
and dic_rel (Y, ) + dicrel(2, ') = dicrel(y, '). Hence, the claim follows from Proposition 3.5.15 I

Lemma 3.8.15. Let H € .yl and let x,2',y,y" € Agen such that Hi relzy = Nicrelar y = {H}.
Then the following diagram commutes:

norm

ind{( (py) — = indT () (3.8.16)

norm

ind?(iF)(py)%md (F )( Y )-

Proof. First, we consider the case that x and z’ are on the same side of H. Then our assumptions

and Lemma imply that

norm norm ___ norm norm norm
y'|x! x|z Yz y'ly ylz

Thus, we obtain the claim.
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Next, we consider the case that z and 2’ are on opposite sides of H. In this case, the points x and

y’ are on the same side of H, and the points y and z’ are on the same side of H. Then according
to Lemma [3.8.14] we have

o O = O and O} 0O = O (3816
Combining the equations in , we obtain that

HOI'm norm __ @norm HOI'm norm norm norm

Yyl @'|w Y|’ =’y ylr Yy ylw
Thus, we also obtain the claim in this case. O

Now, we obtain the following corollary of Lemma|3.8.15| that will be used to show that the coefficient
Pz, p is independent of x.

Corollary 3.8.17. We assume Azioms|3.4.1,(3.4.5,[3.7.1, and(3.8.2 Let H € $icrel and x,y € Agen
such that

f)IC—rel;a:,sHa: = j3]C—rel;y,5Hy = {H}
Then we have

-1
norm norm _
ylz © CI)$75H °© ( ylx ) - (py,sH-

Proof. We write s = sy and recall that by Lemma [3.5.19| we have

norm _ norm
ylx O Cs—1g,s = Cs1y,s © —lyls—1lg-

Using this identity, Proposition [3.8.12] and Lemma [3.8.15] we obtain
norm norm -1 norm norm norm B
oo (51) " (aenso0m,) o (0517)
-1
_ norm norm norm
_( ylx OCs*%,s) 00O _1ac|ac ( ylz )
— norm norm norm -
_<Cs lysO@ y\sl)o s*1$|zo< ylo )

-1
_ norm nor norm
= Cs-1y s © ( s~lyls—1lx © @ ac|;t ( ylz ) )

norm __
= Cg-150 O y‘y—q)%s. O

By using Lemma [3.8.15] we can also prove the following proposition about K-relevant hyperplanes.

Proposition 3.8.18. We assume Axioms|[3.4.1, [3.4.5, [5.7.1, and[3.8.2 Let H € $H_re1 and let
2,y € Agen such that Hx rel.wy = {H}. Then we have

Oaly © Oyjz ¢ C- idindf(f)(pz) '

Proof. Since H € $k_rel, there exists 2/, 3y € Agen such that $,/ ,» = {H} and

@ /|y/ e} @y ‘x ¢ C ld Gij‘ (pzl)7
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or, equivalently,

nOrIn HOI'm
wly © Oy & C-id; nd5 5 (o) "

According to Lemma [3.8.15] we have

norm norm norm norm a’]:1(1 norm norm norm norm
]’ © Pullz y'ly yle a'ly’ Y'ly a'lx x|y
Combining them, we obtain that
@norm norm norm @norm norm norm (_)norm norm norm
=y’ Y|z’ z'|z =y’ y'ly ylw z'|x zly ylw
Using Proposition [3.8.12] we have
norm o norm ___ norm norm norm norm -
! |y’ Yl T Mal|x x|y ylz ! |x

Thus, we obtain that
g(\);m 2|o;m gé C- ld G(F)(px),

and hence

@m|y y|ac §é C- ld G(F)(pz) . O

Now, we can strengthen the statement of Corollary

Proposition 3.8.19. We assume Axzioms [3.4.1], [3.4.3, [3.7.1, and [3.8.9 Let H € $Hi.re and
x € Agen such that Hicreliz,syz = {H}. Then there exist non-zero py u, gz u € C such that

(ém,sH)z = Px,H * (I':L’,SH + qz,H * (I):v,l-

Moreover, the coefficients py, g and g g are independent of the point v € Agen that satisfies
5]C-rel;z,st = {H}

Proof. Let y € Agen such that §, 5,y = {H}. Then by Corollary and Lemma [3.8.10| there
exist py i, qy,n € C such that g, y is non-zero and

2
(Pysp)” =Pyt - Pysyy + Qyr - Py
On the other hand, according to Corollary we have
-1
o By 0 (O]™) = By
Hence, we also obtain that
((I):c,SH>2 =Pyt Py + Qyn - Pa

Since H € $Hicrel and Hicreliz,syz = {H}, by combining Proposition [3.8.18 with Lemma we
obtain that (®,, SH) ZC- 1d c(m( L) that is, py, g # 0. Moreover, p, g and ¢, i are 1ndependent

of x. O
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Scaling the operators ®, ,,, we can ensure that the coefficients in the above Proposition have a
particularly nice form. In order to do so, we choose a partitioning of the coefficient field as follows.

Choice 3.8.20. Let C~; be a subset of C* \ {1} such that

{g.a7'}NCsr| =1 forall geC* {1}

This choice is necessary as the coefficient gs,, in the quadratic relation in the Proposition below is
a priori only determined up to taking its inverse, and we can freely choose any of the (at most) two
options. Strictly speaking it suffices to only make such a choice for the subset of C that contains all
possible values of gs,,. In particular, if £ = 0, then we will see below in Proposition [3.9.1] that g,
is a quotient of two positive integers, so we only need to choose a subset of the positive rational
numbers. One possible choice in that case is to say that g5, > 1, which is the choice that, for
example, Howlett and Lehrer [HL80, (3.19) Definition and (4.14) Theorem] and Morris [Mor93,
§6.9 and 7.12. Theorem]| took in their settings, and which is the reason for our choice of notation
LtC>177‘

Proposition 3.8.21. We assume Axioms|3.4.1,(5.4.3,|3.7.1, and|3.8.2. Then for H € Hicrel and
x € Agen such that k. relz,syz = {H}, there exist unique scalars ds,, € C* and g5, € C>1 such that

(dsH ’ CDx,SH)Q = (qSH - 1) ’ (dsH : <I>z,sH) + Qsy ‘q)x,l-

Moreover, the scalars ds,, and qs, do not depend on the choice of the point x € Agen.

Proof. According to Proposition [3.8.19, the endomorphism ®, ,,, satisfies the quadratic relation

(CI)ac,sH)Q = Px,H * (I)m,sH + qz,H * (I):c,l

with p; g and g, g non-zero. Hence, for d € C*, the endomorphism d- ®, s, satisfies the quadratic
relation
(d : (I)a:,sH)Q = px,Hd : (d : (I)x,sH) + Q:E,Hd2 : (I):c,l-

Thus, to prove the first claim of the proposition, it suffices to show that the quadratic equation
o, d” — pegd —1 =0 (3.8.21a)

has a unique solution d = ds,, with ¢, HdgH € C>1. Since g g # 0 and C is algebraically closed,
Equation has two solutions di,ds € C that are possibly equal. Note that d = 0 is not
a solution of Equation , ie., di,dy € C*. Let i =1 or 2. Since ¢, g,d; € C*, we have
qx,Hdl2 # 0. Moreover, since p, g # 0, we have qLHd? —1 = pg ud; # 0, that is, qLHd? # 1. Hence,
we conclude that g, yd? € C* ~ {1}. Since the solutions d; and ds satisfy dide = —1/q, g, we have
qx,Hdg = (qw,Hd%)_l. Thus, our choice of Cs1 in Choice implies that

‘{Qx,Hd%,qLHd%} ﬂC>1\ =1.

If gz pd? # q.md3, this equation implies that exactly one of the solutions di and dy satisfies
¢z gd? € C>1, as desired.

It remains to consider the case that g, gds = qz, md3. Then we have

pendi = (quudi —1) = (qe.uds — 1) = p; pda,
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so di = dy. We also note that since qx,Hd% # 1 and qx’Hd% = qLHd% = (quHd%)_l, we obtain
that the characteristic ¢ of C cannot be two in this case, and we have ¢, gd? = Gz, gds = —1.
Thus, we conclude that Equation has the unique solution ds, := di = dz, and we have
qx’HdgH =—-1e€ C>1.

Since the coeflicients p, i and g, g are independent of the point x € Agen, Equation is
independent of the point x € Age,. Hence, the scalars ds,, and qs,, = ¢z, HdgH are also independent
of the point x € Agep. O

Proposition [3.8.21] allows us to refine Choice [3.5.17| by replacing 7% in Choice [3.5.17| by ds - T for
all lifts 5 € N(pM)[ZO]M of s € Sk_el- Then noting Remark [3.5.25) we obtain a choice of 7 that

satisfies the following properties.

Choice 3.8.22. We choose a family of non-zero elements

T = {Tn € Hoiju (an’ pM)}neN(pM)[ZO]M
satisfying Conditions and of Choice [3.5.17 and such that for every s € Sy there exists
gs € C>1 such that

(CI)S)Q = (qs - 1) P+ qs - Dy

Proposition 3.8.23. We assume Axioms|3.4.1], |3.4.3, [3.7.1, and|[3.8.9 and fixr a subset C~q C
C* ~ {1} as in Choice . Then we can choose T to satisfy all the properties in Choice .
This means in particular that for each s € Si_rel, there exists qs € Cs1 such that the element @
satisfies the quadratic relation

(CI)S)Q = (qs - 1) P+ qs - Dy

Moreover, if s,s" € Sirel are W(par) -conjugate, then we have qs = gy .

Q
[xo] s

Proof. Since we have $i_relizg,sz0 = {Hs} for all s € Sirel, the claim that we can choose T as in
Choice follows from Proposition as explained in the paragraph before Choice
and the quadratic relation is part of the properties stated in Choice [3.8:22] It remains to show
that we have ¢ = qy if 5,5’ € Si_ra are W(pM)EO]M—conjugate. Let w € W(pM)? Iar such that

o
wsw™ ! = s'. By replacing w with ws if necessary, we may suppose that

Uicrel(ws) = Licrel(w) + 1 = Licrel(w) + xcrel ().
Then, according to Proposition we have
d,P, = ,uT(w, 8) - Duys.
On the other hand, we have
el (s'w) = Lcret(ws) = Licrel (W) + 1 = Licrel(8') + Licrel (w).
Hence, Proposition [3.6.4] also implies that

Oy, = ,UfT(S,a ’LU) Dy = ,U/T(Slvw) * Dys.

50



Writing ds ¢ = pT (w,s)/u” (s, w) € C* and using that ®,, is invertible by Corollary [3.8.13] we
obtain by combining the above equations that <I>w<I>S<I>;1 =dg ¢ - Py. Since @wq)sq);l satisfies the
same quadratic relation as ®,, we obtain

(doso - ®)* = (g5 = 1) - (doyr - @) + - @1,
On the other hand, we have the quadratic relation
(2)* = (gv = 1) - @y + gy - D1.
Since gs, g € C~1, Proposition implies that ds ¢ = 1 and ¢s = gy O

Remark 3.8.24. The proof of Proposition [3.8.23| implies the following claim. Suppose that
5,5 € Skrer and w € W(pM)? Lar satisfy wsw™! = s’ and lx_e1(ws) = Licye1 (W) +Lxcre1(s). Then we

o

-1 _ ; -1 _
w*s - S'e ) -re ) S - T
have ¢,,®,9,, @ . In particular, for all s € Skre and t € Q(par), we have PP, D11

3.9 The coefficients in the quadratic relations in characteristic zero

In this subsection, we keep the notation from the previous subsection. In addition, we assume that
the characteristic £ of C is zero or a banal prime for G(F). Recall that a banal prime is one that does
not divide the order of any finite quotient of any compact, open subgroup of G(F'). This assumption
allows us to give in Proposition below a more explicit description of the coefficients ¢, in the
quadratic relations in Proposition [3.8:23] as it implies that for every finite quotient H of a compact,
open subgroup of G(F'), the finite-dimensional C-representations of H are semisimple. Moreover,
the order |H| of H is not zero in C and neither is the dimension of any irreducible C-representation
of H. Thus, we can divide by these numbers wherever convenient.

Proposition 3.9.1. We assume Azioms|3.4.1,(3.4.5,(3.7.1, and|3.8.2, fix a subset C~1 C C* {1}
as in Choice[3.8.20, and choose T as in Choice[3.8.22,

Let s € Sicrel and let x € Agen such that 9y . = {Hs}. Then the compactly induced representation

indp” (pz) decomposes into a direct sum of two inequivalent irreducible representations:

. Kz.s
ind"*(pz) = p1 © p2.
We assume without loss of generality that p1 and py are chosen so that dime(p1)/dime(p2) €
C-1U{1}. Then
G — dime(p1)
° dime(p2)

To prove Proposition we present a generalization of a result of Howlett and Lehrer [HL80].

Lemma 3.9.2. Let H be a compact topological group and K an open subgroup of H. If £ £ 0, then
we suppose that the order of no finite quotient of H is divisible by €. Let (p,V,) be an irreducible
smooth representation of K. We suppose that the induced representation ind%(p) decomposes into
a direct sum of two inequivalent irreducible representations p1 and po.

Then there exists an element ®p, of Endy (ind%(p)) ~ H(H,p) such that supp(®p) = KhK with
h € Ig(p) ~ K, and such that we have

(®r)?=(¢g—1) @y +q- P,

dime (p1)

where ®1 denotes the identity map on ind5(V,) and ¢ = Fime (p2)°
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Here we define the Hecke algebra H(H, p) associated to (K, p) analogously to Section

Proof of Lemma[3.9.2 The proof of the lemma is essentially the same as [HL80, Theorem 3.18
(ii)], but we include it here for the convenience of the reader.

Since p is a smooth representation of a compact group K, the kernel of p is a normal, open subgroup
of K. We define the normal, open subgroup N of H by

N = ﬂ a(ker p)a?.
a€H/K

By replacing H and K with H/N and K/N, respectively, and regarding p as a representation of
K/N, we may suppose that H and K are finite groups. Moreover, by our assumption on the order
of the finite subquotients of H, if ¢ # 0, then |H| and |K| are coprime to ¢, and hence dim¢(p1),
dime(p2), and dime(p) are also coprime to /.

We fix a non-zero element ®}, € Endy (ind%(p)) such that supp(®}) = KhK. Since Endy (ind%(p))
is two dimensional by Schur’s lemma, ®; and ®}, give a basis of Endy (ind%(p)). We denote by
p1 € Endy (indg(p)) the projection onto p; with respect to the decomposition ind%(p) = p1 @ pa,
and we write

pr=A-P+p- P (3.9.2a)
for some A, € C. Since the element p; satisfies p? = p;, Equation implies that
(A-D1 @) = XDy + - D).
Hence, we have
(n- @)% = (1—=2\) - (- @) + A1 = \) - . (3.9.2b)
We can calculate the value A as follows. We fix a non-zero element v € V), and define the element

fo € ndE(V,) by
£() = {pw)(v) (W € K),

0 (otherwise)

for ' € H. We will apply both sides of (3.9.2a]) to f, and compare the values at the identity
element of H. Recall that the projection p; can be written as

P = dm};ﬁ” S tr(pn (1)) - (indfL (o)) (1),
h'eH

where tr(p1(h'~1)) denotes the trace of the linear map pi(h'~1).
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Hence, we have

~ dime (p

(1) () = TP ex(on ) - () (1) () 1)
heH
- d““] P a1 - (1)
h/E
dlm dime (p1)
N>

H

(o1 (k7)) - p(k) ()

dim 1 _
= (,;Iﬁp > (k) -p(k)> (v)-

keK

Since

di
”nc E:trpl 1) p(k) € Endg(p),
keK

and p is an irreducible representation of K, Schur’s lemma implies that
dlmc
Z tr(pi(k™)) - p(k)
keK

is a scalar multiplication on V,,. Moreover, letting ( , ) and ( , )k denote the inner products of
finite-dimensional representations of H and K, the scalar is calculated as

1 dlmC 1 dime (p1)
tr( tr(p(k)) = K
dlm(j ICEZI{ T Pl r(p( )) dlmc(p) |H| | ‘ (Pl’KaP)K

1 dime (p1) . 1H

= Smels) 1] |K| (p1,indg (p))
_ 1 dime(p)

dime(p)  [H]|
= dime (p1) - (dime(p) - ’H/KD_I
_ dime (p1)

dim¢ (indg (p))
B dime(p1)
~ dime(py1) + dime(p2)”

K|

On the other hand, the right-hand side of (3.9.2a]) is calculated as
(X @1+ p-9) (fo) (1) =A- 0.
Thus, we have

dime (p1) _
dime(p1) + dime(p2)

(3.9.2¢)
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Now, we define the element ®;, of Endy (indg (p)) by

_dimc(pl) + dime(p2) .

Py, = -
" dime(p2)

we Py

Note that ®j is non-zero, because A(1 — \) # 0 implies by (3.9.2b) that p is non-zero. Then
according to (3.9.2b|) and (3.9.2c]), we have

(@n)° = (g —1) @ +q-P1. O

Proof of Proposition |3.9.1. Since the group K, s is compact, the representation indgz’s (pz) is semi-
simple. Hence, the first claim follows from Lemma [3.8.7] To prove the second claim, note that by
Proposition [3.8.21] the elements &3 = ®,, ; and ®, ; satisfy the same quadratic relation. Hence,
we have

((I)I,S)z = (QS - 1) ) (I)x,s + s (I)x,1~ (3.9.1&)

On the other hand, applying Lemma to H = K, s, K = K;, and p = p,, we obtain that there
exists an element ® € H (K, s, ps)s such that

(®)?=(g—1)-®+q- P, (3.9.1b)

where ¢ = ?ﬁ%&;. Since H(Ky s, pz)s is one dimensional by Proposition [3.4.18] there exists d € C*

such that ® = d - ®, ;. Then comparing (3.9.1a) with (3.9.1bf), we have ¢ # 1, and replacing p;
with po if necessary, we may suppose that ¢ € C~;. Then the proposition follows from Proposition

3.8.21| and Equations (3.9.1a) and (3.9.1D). O

3.10 The description of the Hecke algebra

In this subsection, we will prove our main theorem of this section, Theorem [3.10.10, about the
structure of the Hecke algebra H(G(F),ps,). We keep the notation from Section i.e., the
notation from all previous subsections, but allowing the coefficient field C again to be of any
characteristic other than p. We also assume that all previous axioms hold, i.e., Axioms

and and fix a subset C~1 C C* \ {1} as in Choice |3.8.20

Recall that we defined the elements ®,, € Endgr) (ind?(iF) (px)> ~ H(G(F), pg) for allw € W (par)y

oM
in Definition [3.5.23| and that these endomorphisms depend on the choice of a family T, Choice[ |
3.8.22)). In this subsection, we will adjust 7, and thus {®,}, in a way that makes the latter
more compatible with the group structure of w € W(pM)[?CO]M, see Choice [3.10.3| below, so that
we can use these basis elements to write down an explicit isomorphism between the Hecke algebra
H(G(F), pzy) and a semi-direct product of an affine Hecke algebra with a twisted group algebra
in Theorem In order to obtain the subalgebra isomorphic to the affine Hecke algebra, we

start by proving appropriate braid relations.

Lemma 3.10.1. Let s1 and sy be distinct elements of Si_rel such that the order of s1s2 in W (par)as
s m < oo. Then we have
O;, O, Py, - - = Py, Py, D, - >

m terms m terms
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Proof. According to Proposition there exists ¢ € C* such that

Dy Py, O, = Py, Py, D, - -
| S — ~—_——
m terms m terms

We will prove that ¢ = 1. We write

1
n = { ( ‘ m; and @2’1. = @32(1)31@32 cee so that q)sl(I)2,1 =cC- ‘1)271‘1{%.
N——

m—1terms

Then we obtain
(D)2 By = By, 0c- Py 1B, = - By (D)2

Since @5, and ®,, satisfy the quadratic relations
((1)81)2 = (QS1 - 1) : (I)Sl +gs; - 031 and ((I)Sn)2 = (qsn - 1) : q)sn +qs,, - P,
we obtain that

(gsy — 1) - ®s, Po1 +qs, - Pag =2 ((gs, — 1) - P21 Py, + s, - P21)
=C- (an - 1) : (1)31{)2’1 +C2 “Qsp Dy ;.

)

Using that ®4, ®21 and ®5 ;1 are linearly independent, we conclude that
gs, —1=1c¢-(gs, — 1). (3.10.1a)

Q

[mO}M-Conjugate to s1, and there-

-1
Since s, = (323132 . ) s1 (323132 . -), the element s,, is W (pas)
—— ~—_——

m—1terms m—1terms

fore by Proposition |3.8.23| we have g5, = ¢s,, # 1. Thus Equation (3.10.1a)) implies that c=1. [

According to Proposition the group W(par)ag =~ Wirel is a Coxeter group. Hence, we can
define the notion of a reduced expression for w € W(pas)ag in the usual way.

Corollary 3.10.2. We assume Axioms [3.4.1), [5.4.5, |3.7.1], |15.8.9, and that T is chosen as in
Choice|3.8.22, Let w € W (par)ast- Then the element g, P, - - - Py, does not depend on the choice
of a reduced expression w = $182 - S, for w.

Proof. According to [BB05, Theorem 3.3.1 (ii)], every two reduced expressions for w can be con-
nected via a sequence of braid-moves. Then the corollary follows from Lemma [3.10.1 O

We now refine Choice Let t € Q(pap) and w € W(par)ag ~ {1} with reduced expression
w = 8182---8-. According to Proposition there exists dy, € C* such that dyy - Py =
PP, P, -+ - Dg,. According to Corollary the scalar dy,, does not depend on the choice of
a reduced expression for w. By replacing T,, with dy, - T}, for all lifts n of tw in N (pM)EO]M and
noting Remark we obtain the following refinement of Choice
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Choice 3.10.3. We choose a family of non-zero elements

I n
T ={T» € Homg,, ("pm, PM)}neN(pM)[ZO]M

that satisfies the following conditions:

(1) We have Ty = id

PM "

(2) For all n € N(par)y. . and k € Ky N N(par)y,

[zo]ar’

o] as we have T, = T, 0 par(k).

(3) For every s € Sk_rel, there exists g5 € C~1 such that (®4)% = (g5 — 1) - @5 + qs - 1.
(4) For all w € W (ppr)ag with reduced expression w = s183 - - - s, we have &, = &, Py, - - - Dy

e

(5) For all t € Q(par) and w € W (pas)ag, we have P, = Dy,

Proposition 3.10.4. We assume Axioms|[3.4.1], [3.4.5, [3.7.1, and[3.8.2 and fix a subset C~1 C
C* {1} as in Choice|3.8.20. Then we can choose T to satisfy all the properties in Choice|3.10.5,

Proof. According to Proposition [3.8.23] we can choose T as in Choice [3.8.22] and the paragraph
before Choice [3.10.3| explains a rescaling that yields a choice T satisfying all the desired properties.
O

Remark 3.10.5. According to Proposmon m 3.8.21] Condition of Choice |3.10.3] m 3| determines the
choices of T5 € T for all lifts s € N (pM)[xO]M of s € Si_rel- Condltlon ) then determines the
choices of T}, € T for all lifts n € N(pM)[Q;O]M of w € W(par)ag. On the other hand, we can choose

T, € T freely for a set of representatives of lifts n € N(pM)EO}M of t € Q(pum) ~ {1}. Once we
fix T, € T for such a set of representatives, Conditions through determine all elements
of T. We will make a special choice of T,, € T for lifts n € N(pM)[ZO]M of t € Qpar) ~ {1} in
Choice 3115 below.

We also note the following lemma:

Lemma 3.10.6. We choose T as in Choice [3.10.5. Then we have ®®,, = Pp 1Py for all
t € Qpy) and w € W(pnr)as-

Proof. We will prove that ®,,,-1 = q)tq)wq);l. Since we have ®,, = &, Py, --- P, for a reduced
expression w = $182---S,, we may suppose that w = s € Sk.el. Now, the lemma follows from

Remark [3.8.24] O

We can rewrite Conditions and of Choice3.10.3]and Lemma |3.10.6/in terms of the 2-cocycle
T

w.

Proposition 3.10.7. We assume Azioms[3.4.1,[3.4.8,[3.7.1, and[3.8.3, and we fix Cs1 C C* {1}
as in Choice and T as in Choice|3.10.5. Then for v,w € W(par)ag such that lire(vw) =
licre1 (V) + Ui rel(w), we have u” (v,w) = 1. In addition, fort € Q(par) and w € W (par)ag, we have

p(tw) = (w,t) =
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Proof. The first claim follows from Proposition and Condition () of Choice[3.10.3] The second
claim follows by combining Proposition with Condition (5)) of Choice|3.10.3|and Lemma [3.10.6
and recalling that Q(pps) normalizes W (par)as- O

Notation 3.10.8. We recall several standard notations.

(a) We denote by He (W (par)ast, q) the affine Hecke algebra with C-coefficients associated with the
affine Weyl group W (pas)ag, its set of generators Si_re, and the parameter function g. This
means He (W (par)afr, q) is a C-algebra with a vector-space basis

{Tw | w e W(pnm)as}

and relations generated by

TQZ(QS_I)'TS+QS'T1 and Ty =T, Ts,---Ts

S

(3.10.9)

for all s € Sk_re1 and all w € W(par)ag with a reduced expression w = s189 - - - 8.

(b) The twisted group algebra C[Q(par),u”] is defined to be the vector space Drcaipn) € - be
equipped with the multiplication by, - by, = ,uT(tl, to) - by, for ti,ta € Qpar).

(c) We define the C-algebra C[Q(par), 17| x He(W (par)ag, q) to be the vector space
Clpar), 1] @ He(W (par)asr, 9)
with multiplication rules given by:

(1) C[Qpar), 1T] and He(W (par)ag, ) are embedded as subalgebras,
(2) for t € Q(par) and w € W (pas)age, we have by - Tyy = Typpy—1 - by

Now we obtain the following structure theorem for our Hecke algebra:

Theorem 3.10.10. We assume Axioms [3.4.1], [3.7.3, [3.7.1, and [3.8.3, and fix a subset C~1 C
C*~ {1} as in Choice|3.8.20. Then we can choose T as in Choice|3.10.5, and the resulting C-linear

map

Z(pay): H(G(F), pay) — Clxpar), 17 ] x He (W (prr)att, @)

defined by
Z(pxy) (ptw) = bt - Ty (t € Qpamr), w € W(par)ast)

is an isomorphism of C-algebras, where u’ denotes the restriction to Q(ppr) x Qpas) of the 2-
cocycle introduced in Notation and q denotes the parameter function s — qs appearing in

Choice .

Proof. By Proposition we can choose T as in Choice According to Corollary
and Proposition m Z(pz,) is an isomorphism of vector spaces. Moreover, by Proposition W
the restriction of Z(pg,) to C[Q(par), 17 ] is an algebra homomorphism, and Conditions and
of Choice imply that the restriction of Z(pg,) to He(W (par)as, q) is also an algebra
homomorphism. Combining these observations with Lemma we obtain that Z(pg,) is an
isomorphism of C-algebras. O
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3.11 Anti-involution of the Hecke algebra

In this subsection, we keep the notation from the previous subsection, and moreover we assume that
C admits a nontrivial involution ¢ + ¢. The fixed field of this involution will then be a real closed
field that we will denote by R. (See Corollary VI1.9.3, Theorem IX.2.2, and Proposition 1X.2.4 of
[Lan02]. For instance, R = R if C = C and ¢ — ¢ denotes complex conjugation. Such an involution
exists if and only if C has characteristic zero. In this case, one can construct the fixed field R, and
thus the involution, by choosing a maximal, totally ordered subfield of C. Note that the choice of
R, and thus the choice of involution, is never unique. However, in practice, the number of explicit
choices that one can make (i.e., choices that do not require the Axiom of Choice), is usually zero
(say, for C = Q) or one (say, for C = C or Q).

Having made such a choice, write |c| = c¢ for ¢ € C, and call ¢ the C-conjugate of ¢ (which depends
on our fixed choice of involution even though it is not reflected in the notation). For a vector
space V over C, call a function ( , ): V x V — C Hermitian if it is linear in the first variable,
C-conjugate-linear in the second variable, and we have (v, w) = (w,v) for all v,w € V.

Assume that all previous axioms hold, i.e., Axioms [3.4.1] [3.4.3] [3.7.1} and and fix a subset
Cs1 C C* ~ {1} as in Choice and 7T as in Choice Following [Ciul8| Section 4.4], we
define a support-inverting, C-conjugate-linear anti-involution ¢ — ¢* on H(G(F), ps,) as follows.
We fix a Ky -invariant, positive-definite Hermitian form ( , ),, on V,, . Such a form exists
because K, is compact, and it is unique up to R-scalar multiples because p, is irreducible. For

pe /H(G(F),,OIO), we define 90* S H(G(F)apxo) by

(" (9)(v), w)p,, = (v, 0(g ") (W))p,,  forallgeG(F)and v,w eV, . (3.11.1)

We note that the map ¢ — ¢* is a support-inverting, C-conjugate-linear anti-involution that does
not depend on the choice of Hermitian form on V), . Hence, for each w € W(pM)EZO}M, there is

some scalar ¢,, € C* such that ¢} = cpp,-1.

Lemma 3.11.2. For all w € W(py)
then ¢, = 1.

EO]M of order 2, we have |cy| = 1. Moreover, if w € Sk_yel,

Proof. If w?> = 1, then we have ¢, = ¢ = (CoPw)’ = Cuw(Pw)’ = CuwCwPw, SO CwCw = 1, as
required. Suppose that w € Sk Since ( )* is an anti-involution, the element ¢} = ¢y
satisfies the same quadratic relation as ¢,,. Thus, Proposition implies that ¢, = 1. O

Corollary 3.11.3. We have ¢, = 1 for all w € W(ppr)ast-

Proof. Let w € W (par)ag with reduced expression w = s182 -« s,. According to Condition in
Choice [3.10.3] we have @, = @5, @s, -+ Ps, and Q-1 = Qs Qs - Ps, - Thus, we obtain that

Oy = (051055 Psr) = Qs Qs L+ P = P Por_y " Ps1 = Poy—1,

as required. ]

Proposition 3.11.4. We assume Azioms|3.4.1,3.4.4,13.7.1, and|3.8.4, fix a subset C~1 C C*~ {1}
as in Choice and choose T as in Choice [3.10.5 Then we can choose a set of scalars
{d, € C* |t € Upnr)} such that (dypr)* = dy-1—1 for all t € Q(par).
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Proof. Let di = 1. For all nontrivial ¢ € Q(ppr) of order 2, from Lemma [3.11.2 and Hilbert’s
Theorem 90, we can choose d; € C* such that d;/dy = ¢;. Then (dypy)* = dicrpr = dppr, = dp—1p4-1,
as required.

Now consider the set of elements t € Q(pys) such that t? is nontrivial. Partition this set into
pairs {t,t7'}. Given a pair, let us choose an element arbitrarily, and without loss of generality
call it t. Let d; = 1 and d;-1 = ¢;. Then we have (dypy)* = ¢ = -1 = di-1p,-1 and
(di—1p4-1)" = (crp—1)* = @i = o1 = dypy, as required. O
This allows us to refine our choice of {T},} as follows, see Proposition [3.11.6

Choice 3.11.5. We choose a family of non-zero elements

T ={T,, € Homg,, ("pur, pM)}neN(

V)
pM)[Io]M

that satisfies all the conditions in Choice [3.10.3 and for all ¢ € Q(par), we have ¢} = p;-1.

Proposition 3.11.6. We assume Axioms|[3.4.1], [3.4.5, [3.7.1, and[3.8.2 and fix a subset C~1 C
C* ~ {1} as in Choice|3.8.20. Then we can choose T to satisfy all the properties in Choice|3.11.5,

Proof. The proposition follows from Remark [3.10.5|by replacing the previous choice of T,, with d;-T,,
for all lifts n € N(par) of t € Q(par), and Proposition |3.11.4| (see also Remark |3.5.25)). O

Q
[zo]ar

We define a C-conjugate-linear map ( )* on C[Q(par), 17| x He (W (par)ag, @) by
(bt . Tw)* == btfl . Ttwfltfl - wal . btfl

for t € Q(pnp) and w € W(pnr)as-

Proposition 3.11.7. We assume Axioms|3.4.1], |3.4.5, |3.7.1, and|3.8.2 and fix a subset Cs1 C
C* ~ {1} as in Choice |3.8.20. Then we can choose T as in Choice and the resulting

C-algebra isomorphism

I(p;m): 'H(G(F),pxo) — C[Q(pM)7NT] X HC(W(pM)aH7Q)

in Theorem [3.10.10 preserves the anti-involutions on both sides. In particular, the C-conjugate-
linear map ()* on C[Qpar), 1T ] x He(W (par)ag, q) is an anti-involution.

Proof. By Proposition we can choose T as in Choice The claim that Z(p,,) preserves
the anti-involutions follows from Corollary the condition ¢} = ¢;—1 for t € Q(ppr) in
Choice and the anti-involution property. Since Z(ps,) is an isomorphism of C-algebras, we
obtain the last claim. O
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3.12 (Non)uniqueness of the Hecke algebra isomorphism

In this subsection, we keep the notation from Section [3.10] Hence, we allow the coefficient field C
again to be any algebraically closed field of characteristic £ # p. We also assume that all previous
axioms hold, i.e., Axioms 3.4.1] 3.4.3] [3.7.1} and [3.8.2] fix a subset C~; C C* \ {1} as in Choice
3.8.20] and choose T as in Choice We can make explicit how much choice we had in
constructing the particular isomorphism in Theorem [3.10.10

We say that a C-linear bijection W on C[Q(par), 17| % He(W (par)ag, @) is support-preserving if for
all t € Q(par) and w € W(par)aer, we have ¥ (b, - Tyy) = cby - Ty, for some scalar ¢ € C* that might
depend on t and w. We also say that a C-linear bijection Z: H(G(F), psy) — C[Qpar), u7] x
He (W (par)asg, q) is support-preserving if for all t € Q(pys) and w € W (pas)ag, we have Z(pg,) =
cb;- Ty, for some scalar ¢ € C*. For x € Homyz(2(par),C*), we define the support-preserving algebra
automorphism W, of C[Q(par), u7 ] x He(W (par)at, q) by Wby - Ty) = x(£)bs - Ty, for t € Q(par)
and w € W(par)aft-

Proposition 3.12.1. A C-linear bijection ¥ on C[Q(par), 1] x He(W (par)ag,q) is a support-
preserving algebra automorphism if and only if there exists some x € Homz(Q(par),C*) such that
U=y,.

If C admits a nontrivial involution c — ¢ and T satisfies all the properties in Choice then
the isomorphism W, preserves the anti-involution defined in Section if and only if |x(t)] =1
for allt € Q(par).

Proof. Suppose that WU is a support-preserving algebra automorphism of C[Q(par), 1" |x He (W (par)asts @)-
Since ¥ preserves support, for all ¢ € Q(par) and w € W(pps)ag we must have that U(b, - T,) =
x(tw)b; - T, for some scalar x(tw) € C*. Since W is an algebra isomorphism, we must have that

x(tw) = x(t)x(w). Using the first relation of (3.10.9)), we have
X(5)*((gs = 1) - Ts + g5 - T1) = (x(5)Ts)? = ¥(Ts)* = U(T3) = (g5 — 1) - (x(5)Ts) + s - Ty

for all s € Si_re1. Comparing the coefficients of Ty and using g5 € C* ~ {1}, we obtain that x(s) =1
for all s € Sk_rel. Then the second relation in (3.10.9) and the fact that ¥ is an algebra isomorphism
imply that x(w) =1 for all w € W(pps)ag. Thus, ¥ acts via the identity on He (W (par)ag, q), and
it is determined by the scalars x(¢) for ¢t € Q(par). The condition of ¥ preserving the multiplication
of C[Q(par), 1] is equivalent to x being a homomorphism.

The last claim follows from the definitions of ¥, and the anti-involution ( )* on C[Q(par), u” ] x
He(W(par)a: 4)- O

Note that the group Homz(Q(pas),C*) acts on the group of support-preserving algebra automor-
phisms via ¢ : W, —— Wy,

Proposition 3.12.2. We assume Azioms|[5.4.1), [5.4.3, [3.7.1, and [3.8.3, we fix a subset C~1 C
C* ~ {1} as in Choice and we choose a family T as in Choice [3.10.5. Then the set of

support-preserving C-algebra isomorphisms

H(G(F), pay) — C[QUpar), 1] x He(W (par)atts @),

is a torsor under Homz(Q(par),C*).
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If C admits a nontrivial involution ¢ — ¢ and T satisfies all the properties in Choice[3.11.5, then
the set of such isomorphisms that also preserve the anti-involutions defined in Section |3.11] is a
torsor under the group Homz (Q(par),{z € C* | |z| = 1}).

Proof. Fix such an isomorphism 7, which exists by Theorem For every x € Homg(Q(par),C*),
we have a support-preserving C-algebra automorphism W, of C[Q(par), 17 | x He (W (par)ast; @), as in
the proof of Proposition Let Z, denote the composition ¥, o Z. Then it is clear that this is

a support-preserving algebra isomorphism from H(G(F), pz,) to C[Qpar), 1" ] % He (W (par)a @),
and that all such isomorphisms arise in this way.

Suppose that C admits a nontrivial involution ¢ — ¢ and 7T satisfies all the properties in Choice
If we also assume that Z preserves the anti-involution (such an isomorphism exists by
Proposition , then the last part of Proposition implies that Z, preserves the anti-
involution if and only if x € Homyz (Q(pa), {z € C* | |2| = 1}). O

4 Comparison of Hecke algebras

We have seen in Section [3| that if a pair (K, p) consisting of a compact, open subgroup K of
G(F') and an irreducible representation p of K satisfies some axioms, then we can determine the
structure of the attached Hecke algebra H(G(F), p). Now we consider a pair (K, p°) for a subgroup
GY of G. We will show that if the two pairs (K, p) and (K, p°) are related according to some
axioms, Axioms [4.1.2] [4.2.1] and [.3.1] then we have a support-preserving algebra isomorphism

H(GO(F), p) — H(G(F),p), see Theorem and Theorem

As a special case, in [FOAM, Theorem , we will obtain an isomorphism between the Hecke
algebra attached to a type of a Bernstein block of arbitrary depth constructed by Kim and Yu and
the Hecke algebra of a depth-zero type. Readers interested in this case might find it helpful to first
read Sections and of [FOAM] to have an example in mind for the objects appearing in the
axiomatic set-up below. A reader solely interested in the setting of [FOAM] might also completely
replace all the below objects by those introduced in [FOAM, Section 4] with the same symbols.

4.1 The set-up

We let G° be a connected reductive subgroup of G of same rank as G and let j: B(G° F) —
B(G,F) be an admissible embedding of enlarged Bruhat—Tits buildings in the sense of [KP23|
§14.2]. We note that an admissible embedding exists by [KP23, Proposition 14.6.1, Corollary 14.7.3,
Proposition 14.8.4]. For example, in the setting of types constructed by Kim and Yu, G is a twisted
Levi subgroup of G, see [FOAM, Definition [4.1.1].

Let M be a Levi subgroup of G° for which A,;0 = Ay, where M denotes the centralizer Zg(A o)
of Ay in G. Recall that Apso, respectively, Aps, denotes the maximal split torus in the center of
M?, respectively M. Note that M is a Levi subgroup of G and we have G N M = MY We fix a
commutative diagram

B(GY, F)—~ B(G, F)

B(M°, F)— B(}, F)
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of admissible embeddings of buildings and identify B(M?, F), B(M, F), and B(G, F) with their
images in B(G,F). Let zg € B(M° F). Then the affine spaces ¢ + (X.(A4y0) ®zR) and
1o + (Xu(Apy) ®z R) attached to (G, M° z¢) and (G, M, z¢) in Section agree, so we may
denote both by the same symbol A;, without ambiguity. By our definition of M, the subgroups
Neo (MO)(F) of GO(F) and Ng(M)(F) of G(F) introduced in Section satisfy the

relation

[%0] 570 [xo]amr

Neo(MO)(F) = G(F) N Ng(M)(F) (4.1.1)

[mO]MO [zo]ns*

We fix a locally finite set of affine hyperplanes $ in A,, that do not contain xy. We let Ko,
resp., Ky, be a compact, open subgroup of M%(F),,, resp., M(F),,, and (Pa0, Vo, ,0), TeSD.,

(pars Vi, ), be an irreducible smooth representation of Ky, resp., Kp. Let N(pMO)[ZO} , bea
M

subgroup of N(py0) containing Ao (F). For example, in [FOAM]|, we take N(p Mo)?

[zo] pr0 0] 510 -

N (pMO)[IO]Mm and (Ko, pp0) and (K, par) are depth-zero and positive-depth supercuspidal
types as constructed by Yu ([YuOl]) if C = C.

We will assume the following axiom that relates the general pairs (K0, pp0) and (Kar, par)-

Axiom 4.1.2.

(1) There exists a compact, open subgroup Kps o4 of M(F') that is normalized by N(pyo)

v

[zo] pr0
Ky such that the group M%(F) N Koy is contained in the kernel of py0, and we have
KM == KMO . KM70+.

(2) There exists an irreducible smooth representation (kaz, Vi,,) of Kjs that extends to a smooth

KM
representation ks of the group

Ky = N(pMO)Eo] Ky

MO
such that
pm == inf (ppro) ® K,

where inf (pyr0) is the inflation of pyr0 to Kjs via the surjection
KM = KMO . KM7[)+ — (KMO . KM70+)/KM70+ ~ KMO/ (KMO M KM70+) .

Remark 4.1.3. In the setting of [FOAM], the group Ko+ is defined in [FOAM| (4.1.3)], ks is a
twist of a Weil-Heisenberg representation defined in [FOAM, Section p. , and the extension
ks of kpr is constructed explicitly in [FOAM), Deﬁnition and the preceding text. That Axiom
holds in this setting is proven in [FOAM, Proposition[4.3.4]. The existence of an extension %
of kys as required in this axiom was the key challenge in proving that all our axioms are satisfied
in the setting of [FOAM].

Remark 4.1.4. Axiom in particular includes the statement that M%(F) N Kpro4+ C Ko,
and hence the requirement K = K0 - Kpro4 of the axiom implies that M°(F) N Ky = Kyyo.
Since G N M = M? and K); C M(F), we also have G*(F) N Ky = K 0.

of N(pa)fwolsr 25 N(par);,

It will be convenient for us to choose the subgroup N (pM)? ] folar =

oM
N(ppo)y., , but in order to do so, we first need the following lemma.
[%o] 570
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Lemma 4.1.5. We have
N(PMO)EO]MO C N(PM) wo)ns -

Proof. Let n.€ N(pypo)y ,- According to Equation (4.1.1), we have n € Ng(M)(F),),,- Hence,

[zo]ps
it suffices to prove that n € Ng(r)(pa). According to Axiom , the element n normalizes
the group K. We will prove that n normalizes the representation pys. Let TO: "pp0 — ppgo be
an isomorphism. Then the morphism

TP @Fp(n) : "oar = "ppgo @ T — pago @ Ky = par

is an isomorphism as well, hence n € Ng(r) (par)- O

4.2 Compatible families of quasi-G-covers

We keep the notation and assumption from the previous subsection, i.e., Axiom holds. In
this subsection, we will define the quasi-G%-cover (K3, p2 ) of (K0, pp0) and the quasi-G-cover
(Kzgs pzo) Of (Kar, par) to which we attach the Hecke algebras that we prove are isomorphic in
Theorem For example, if C = C, we can take (K, pz,) to be a type for a Bernstein block
constructed by Kim and Yu as a G-cover of a supercuspidal type (K, par). In this case, the
pair (K9 ,p9 ) can be taken as the twist by a quadratic character introduced in [FKS23] of the
depth-zero type included in the input for the construction of (K, pz,). (See [FOAM, Section
for details, where we include the twist by the quadratic character in the construction of (K, pz,)
and therefore can take (Kgo, pgo) as the depth-zero type input for this twisted construction.) As in
Section we will define not only one quasi-cover, but a whole family of quasi-covers. Moreover,
we will formulate a compatibility condition between the family of quasi-G°-covers and the family

of quasi-G-covers, see Axiom

Let
ICO = {(K27K27+7 (pg7vpg))}IEAgen

be a family of quasi-G°-cover-candidates that satisfies Axiom [3.4.1|with the subgroup N (p Mo)QQ

[xO]MO

Let

of N(pp10)(g),,0- According to Lemma 4.1.5, N(pMO)E:o] , is also a subgroup of N(pnm)
M

[zo]as

IC == {(Kza KQE,+7 (Ioﬁ’ sz))}l’eAgen

be a family of quasi-G-cover-candidates that satisfies Axiom [3.4.1|with the subgroup N(p M)EO]M =

N (pMo)[QZO]MO of N(pn)jwo],,- Examples for such families are presented in the paragraph after

[FOAM) Lemma 4.1.9] on p. 43| of [FOAM]. We assume that the two families satisfy the following
compatibility properties.

Axiom 4.2.1. For each x € Agen, the following properties hold.

(1) There exists a compact, open subgroup K, o4 of K, that is normalized by KY such that the
group GY(F) N K 0+ is contained in the kernel of p%, and we have K, = K0 - Ky o0+
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(2) There exists an irreducible smooth representation (K, Vi, ) of K such that
P = inf (pg) ® Ky,
where inf (pg) is the inflation of p¥ to K, via the surjection

Ky =K) Kyor — K Koy /Koy = K2/ (KIN Ky o4)

(3) We have
Iy (pz) = Kz - Igomy (pD) - Ko

This axiom is verified for the setting of [FOAM] in [FOAM, Proposition 4.3.5].

4.3 K-relevance vs. K'-relevance

We keep the notation and assumptions, i.e., Axioms [3.4.1], [£.1.2], and [4.2.1] from the previous
subsection. Recall that we defined in Section intertwining operators O, for z,y € Agen. In
order to distinguish the intertwining operators attached to G and K from the intertwining operators
attached to G° and K° we will denote the former by

@yll’: indgiF) (pz) — indgglF) (py)

and the latter by

GO(F)(

e’ ‘md ()( ») — ind

ylz py)

This means that an affine hyperplane H € § is called KC-relevant if there exists x,y € Agen
such that $,, = {H} and @wly o eglr ¢C- 1d Go(F)( o) In this subsection, we will exhibit the

relation between ©,, and e ylor S€€ Lemma and show that the notions of K-relevant and

KCO-relevant coincide, see Corollary n, 4.3.7, under the assumption of the following axiom that ensures
a compatibility between the data { K}, K o+, ke } for different 2 € Agen.

Axiom 4.3.1. For any z,y € Agen such that d(z,y) = 1, there exists a compact, open subgroup
K 271/ of G°(F), a compact, open subgroup K, 4.0+ of G(F), and an irreducible smooth representation
(Kays Vieg, ) of Ky = Kgyy - Ky 4.0+ such that

Rzx,y
(1) K2, contains K and K.
(2) Ky y0+ is normalized by the group K2, , and we have

T,y

Kzt C (GO(F) N Km,0+) “Kyyor and  Kyoy C (GO(F) N Ky70+) Kz 04

(3) The group G°(F) N Ky 404 is contained in the kernels of p9 and pj.
(4) The restriction of Ky, to Ky 404 is irreducible.
(5) We have isomorphisms

K ()

~ K9-Ky 0
. y x,y;0+
/{x,y|Ko Koo = ind* and  Kgy KO Ky yor — 1nde (Ky)-
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Since the conditions of Axiom [£.3.1] are symmetric with respect to z and y, we may and do assume

0 _ 70 _ _
that vay = KW:, Ky yor = Kyz04, and kg y = Ky .

In Section below, where we will also assume Axioms and Kgysx and K ,, will play
the role of K . in Axiom m

x,s

Remark 4.3.2. In the setting of [FOAM], the objects K9, K, .0+ and i, are defined in [FOAM,

I?ZJ7

Notation , and [FOAM, Lemma shows that these objects satisfy Axiom for the
families K° and K considered in [FOAM]. Axiom is a reason why we need to twist the
construction of Kim and Yu ([KY17]) in [FOAM] by a quadratic character following [FKS23].
Without this twist, the Hecke algebra isomorphism in [FOAM| Theorem , which is Theorem
applied in that setting, would not be true in general, see [FOAM| Section for an example.

Remark 4.3.3. Axiom and imply that
K: CK) Kpyor C Koy and Ky C KJ - Ky 04 C Kay,.

We assume Axiom from now on. Let H € § and z,y € Agen such that $,, = {H}. Let
(K, Ky4:04 Kzy) be the triple from Axiom Since the representation pQ is trivial on the

z,y’

group Kg NKz g0+ C GO(F) N Ky .04, we can inflate pg to the group Kg - K4 4,04+ Vvia the surjection
Kg Koyor — Kg(c) ’ Kx,y;0+/Ka:,y;0+ = Kg/ (Kg a Kw,y;0+) .

We use the same notation inf(p)) for this inflation as for the inflation of pQ to K, which is just
the restriction of the former to K,. Then, by using Axiom [.3.1|(5), we have

s 1Kz gy _ e 1 Kay o 0 ~ i 1Ky KO Ky ot 0
indy " (pz) = ind ™ (inf (p,) ® kz) ~indgpy o (indg? (inf (p)) @ Ka)
~ ind Ky : 0 o KO Ko g0+ ~ i Key : 0
~indyhe o (mf (pa) ® indy” Ko | > indgote inf(p;) ® Kaylko.K, ,0s
~ 3 Kz,y 3 0 3 Kg,y'KI,y;O"' : 0
- deg-Kz,y:,M (mf(px) ® Fay - deS-Kz,y;o+ nf(pg) ) ® Kay

. of. KO
~ inf (deg’y (pg)) R Ra,y,

. . K9 . . .. KD .
where inf (de'd’y (p2)> denotes the inflation of the representation ind, " (p9) to K., via the

T

surjection
K,,=K% K — K% K K ~ K9 (KO N K, )
T,y zy  Dxy0+ zy " z,y;O-i-/ x,y;0+ :p,y/ z,y ,y;,0+) -

We write this isomorphism as
Y. indgi’y(px) 5 inf (ind%’%pﬁ)) ® Kg,y-
Similarly, we obtain an isomorphism
LY. indgz’y (py) — inf (indgg’y (,02)) ® Ky
According to Axiom , Remark and the definitions of ©,, and ®2|x, we have
O, € Homg(p) (indf(iF) (pz), ind?{iF) (py))Kw ~ Homg, , (indﬁi’y (pz), indgz’y(py)) (4.3.4)
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. KD KD
@2‘33 € Homgo(r) (md?{g&J )( o), 1ndG(F)( ))Kgy ~ Hompo | (1nng’y (pg),deg’y(pg)) (4.3.5)

(see Lemma and therefore we may view ©,, and ®2|$ as elements of the latter spaces. Hence,

we obtain an element
7Y 00y, 0 (r2v)y~te Homg, , (inf(indglg‘y (P2)) ® Kay, inf(indgg’y (,02)) ® ’%,y) .

Lemma 4.3.6. There exists c € C* such that
LYo, 0 (ij’y) =c¢-0Y

y‘x ® ldVNz,y .

Proof. Since K 4.0+ is contained in the kernels of the two representations inf (md Ko (pg)) and

. . KD C . .. . .
1nf(1ndK§"” (pg)), and the restriction of k;, to Ky .04 is irreducible by Axiom {4.3.14), we can

write

[;j,y o ®y|x o (];»’,y)—l =0'® ide,y
for some

IS Homyo | (md Y(p2),ind ”(pg)).

It remains to show that there exists ¢ € C* such that ©' = ¢- GSW The definition of 92‘9: implies
that

KO K9
69, (Vi) Cindyet™ (Vo). (4.3.6a)
On the other hand, we can prove

. G KOK9
O (V) Cindyet™ (V) (4.3.6b)
as follows. Let v0 € Vo and w € V,, and consider W ewe Vo @V, =V, C indgz’y (V,,). By
tracing through the definition of I;’Y, we obtain that

%Y (0 @ w) = " @w e V@V, Cindy ”(Vo)@V

K,y

. . . G KOKy
where we regard k, as a K, -subrepresentation of i, via &, < ind” SO (K Ky ™ Ryl K-

Hence, we obtain that I (V,,) = V0 ® Vi, equivalently, (129! (Vo ® Vi) =V, The defini-
tions of I, and ©,,, and the observation K)) - K3 - Ky y04 = Ky - Ky o1 - K9 - Kooy 2 Ky - K,
then imply that

Y|z

x, -1 . G KOKY
(170 Oypa 0 (1)) (Vig @ Vi) € indyt™ (Vig) @ Vi,

Thus, we conclude (4.3.6b|).
According to (4.3.6a)) and (4.3.6b)), we have

KO~ 0

0 / 0 : v Bz 0y 0 . 1K 0
@y|x|Vp%> S} ‘Vp% € Hong (pz,lHng (py)> = Hong (anlnngng(Py|Kngg) )
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. . . . . K9-K9 . 0
where the isomorphism comes from the isomorphism ind K§ (pg) — mdgﬁm Ko (pg| KON Kg) of K-
representations given by f — f| k0. Since K Y'is a compact group, the compact induction functor

i dgom K9 is not only the left-adjoint but also the right-adjoint of the restriction functor. Hence,

accordmg to Lemma [3.3.5] we have

0 . K 0 -~ 0 0 _
Hom go (pralndK§mK8 (Py|Kngg)) =~ Hom xonko <Px|Kng57Py|Kngg> = Endg,, (Par0)-

Since pj o is an irreducible representation of K0, we obtain that

0

. 0 - Kng 0 .
dime (Hong (pm,lnng (py))) = dim¢ (EndKM0 (pao)) = 1.

. . . L K?
Thus, there exists ¢ € C such that ©’ ’Vo =c- @yMVO Since the K9 -representation (de?y (p2),

deO (Vpg)) is generated by the subspace Vo, and the homomorphisms ©' and ©Y ylo L€ K 0 -
equivariant, we also obtain that ©' = ¢- @y‘x. Slnce @ylx and ©,, are non-zero (see Corollary

we obtain the lemma.

Corollary 4.3.7. We assume Axioms|[3.4.1, [{.1.9, [4.2.1, and [{.3.1. Then an affine hyperplane
H ¢ $ is K-relevant if and only if H is K-relevant.

Proof. Let x,y € Agen such that $,, = {H}. To prove the corollary, in light of Equations (4.3.4)
and (4.3.5)), it suffices to show that

©,, 00

ylz

zly eC- idmdﬁg’y (02) if and only if G)x‘y o @ylx eC-id

ind 58" (09)
According to Lemma there exists ¢ € C* such that
LY 0Oy, 0 2yt =¢. Gy‘x ®idy,, -
Replacing x with g, we also obtain that there exists ¢’ € C* such that
I3V 00,0 (I3V) " = ¢ 0%, ®idy,, , .

Hence, we have I3 o (6, 0 ©,,) o (Iz"¥)~ L= @2| 00 yle ®1dv, , from which we deduce the
desired equivalence. ]

4.4 Hecke algebra isomorphism

We keep the notation and assumptions, i.e., Axioms[3.4.1], [4.1.2] [4.2.1], and [4.3.1], from the previous
subsection. In this subsection, we are going to show that the Hecke algebras attached to (K7 00, on)
and to (K, pz, ), respectively, are isomorphic, see Theorem m

In order to use the structure of the Hecke algebras as a semi-direct product of an affine Hecke
algebra with a twisted group algebra that we exhibited in Theorem we will also need to
assume the axioms that were used in that theorem. More precisely, from now on, we suppose that
the family K also satisfies Axiom Starting from after Lemma we also assume that the
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group W(pMo)EO]MO satisfies Axiom [3.7.1] for a normal subgroup W (pas0)ag of W(pps)y and

[zo] a0’

that the family K satisfies Axiom [3.8.2] with the groups K= K{ ., for s € Sgo_e and © € Agen
with 95 s» = {Hs}, and where K U denotes the group in Axiom We will first show that the

T,ST
analogous axioms also hold for .

V)
[xo]ar

Lemma 4.4.1. The family KC with the subgroup N(par)
fies Aziom|3.4.5

=N (pMO)E«O]MO of N(pM)[wo)yy Satis-

Q
[330]]\/10

Proof. Let x € Agen. Since the group N (py0) and the family K° satisfy Axiom [3.4.3 we have

Toory(p9) = K- Nlparo) [y - KG-

MO

Combining this with Axiom [£.2.1)(3)), we have

Iary(pz) = Ko - Loy (p2) - Ko = Ky - N(pago);, O

[xo]Mo )

Q

[zo] pr to

To show that K also satisfies the remaining axioms, recall that we chose the group N(pas)
be N(pMo)go] , C GO(F). Hence we have
M

NKy = ]\7(,0]\/[0)QQ 0 N Ko (4.4.2)

Q
[mO]MO [xO}M

N(par) gy, NV K = N(paro)

N

by Remark |4.1.4f Thus, we obtain that W(pM)ECO]M = W(pMO)go} ,- Moreover, according to
M
Corollary [4.3.7, we have Wic_rel = Wico_yl-

Lemma 4.4.3. The family IC satisfies Am’om with the group Kg’c,S = Ky sz for s € Sipel =
Sicorel and & € Agen Wwith 4 0 = {Hs}, where Ky ¢, denotes the group in Aziom |4.3.1)

Proof. According to Remark the group K s, is a compact, open subgroup of G(F’) containing
K. According to Axiom [4.3.1|[3)), we have
N(papo)y,

[‘TO]IMO Z0oJpr0 z,5T

N Koo = N(pao) g o N K o+ Kaswor = N(pao) oy NGUF) N KL oy Ko saon

[QJO}M

= N(pMO)EO}MO N Kg,sa: : (GO(F) N Kz,sz;0+) = N(parw) >

Q
[IU]MO N Kx,sx'

Combining this with (4.4.2)), we obtain that

(N(PMO)EO]MO ﬂKx,sx)/(N(PMO)[ZO]MO NKwm)= (N(PMU)[Q;O]MO ng,sx)/(N(pMo)go} JNE o) ={1, s},

M

where the last equality follows from K satisfying Axiom for the group K, , = K9 .. O

We fix a subset C~1 C C* \ {1} as in Choice [3.8.20, According to our assumptions and Proposi-
tion [3.10.4] we can choose a family

_ 0
70 — {Tn € Homg (anO’pMO)}HEN(pMo)EO] )
M

as in Choice B.10.31
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Proposition 4.4.4. Assume Azioms [3.7.1], [3.7.3, [3.7.1, [3.8.3, [{.1.2, [£.2.1, and [[.3.1) for the

relevant objects as described above. Then there exists a unique family

T = {T,, € Homg,, ("our, pM)}neN(pMo)[v
z0] 570

that satisfies all the properties in Choice and the condition that
T, = T2 @ Fpr(n)

for alln € N(pMO)[ZO} , whose projections to W (pago)y
M

o] o 4T€ contained in Q(pyo).
M

Proof. According to our assumptions, Lemma Lemma and Proposition we
can choose a family 7T to satisfy all the properties in Choice [3.10.3] Moreover, according to Re-
mark there exists a unique family 7 satisfying all the properties in Choice [3.10.3] together

with the condition that T}, = TO ® & (n) for a set of representatives of lifts n € N(pMO)[QiO] ) ©
M

t € Qpyo) ~ {1}. Since Ky is an extension of ky; and we have pyr ~ inf (pp0) ® K7, we also
obtain that T}, = T? ® & (n) for all lifts n € N(pp0)y , of elements of Q(pys0). O
M

[zo]
We fix a family 7° as in Choice [3.10.3| and let 7 denote the family satisfying the conditions
0
in Proposition 4.4.4 We define non-zero elements ®9 ,, € Endgo (ind?;o(F) (p2)> and ¢, €

W
. G(F

Endg(p) (dei )(Px)) for € Agen and w € W(pMo)E,O]MO

resp., @, denote the element of H(G°(F),pl), resp., H(G(F), p), that corresponds to ®Y

resp., @, via the isomorphism in (2.2.3)). We write () = sogmw, Ow = Prow, P, = DY and

zo,w?
Dy = Py -

According to Theorem [3.10.10] the map

as in Definition [3.5.23, and let gpgﬂﬂ,

Pt — b - Ty (t € Q(paro), w € W(pago)att)
defines an isomorphism of C-algebras
~ 0
I(pl,): H(GO(F), ply) — ClQparo) 17 ] < He(W (pago)ats 4°),

and the map
Prw = by To (t € Qppro), w € W(ppg0)atr)

defines an isomorphism of C-algebras
I(Px0)3 H(G(F)7pwo) — C[Q(pMo), MT] X /HC(W(pMo)afBQ)v

where ,uTO and u7 denote the restrictions to Q(py0) X Q(pppo) of the 2-cocycles introduced in
Notation and ¢° and g denote the parameter functions s +— ¢2 and s > g5 from Sio_.¢ to Cs1
such that the elements ®Y and ®, satisfy the quadratic relations

(09)7 = (g2 —1) - @0+ ¢2-®Y and  (®,)% = (g, — 1) Dy + g, - D1 (4.4.5)

Thus, in order to prove that the two Hecke algebras H(G?(F), p2, ) and H(G(F'), ps,) are isomorphic,
we will prove that ,uTO =47 and ¢° = ¢.
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Lemma 4.4.6. We have u7° = u7 on Q(paro) X Qpyo).

Proof. Let v,w € Q(ppo). We fix lifts m of v and n of w in N(PMU)? 1o Since ks is a
M

o
representation, we have Kyr(mn) = Kpr(m) o Kar(n). Hence, our choice of 7 implies that

1T (0 w) - T = T 0 Ty = (TSL o T,(L)) ® (Rar(m) o Kar(n))
= (T2, o T?) ® Rar(mn) = MTO(U,w) IO @ Rar(mn) = ;ﬂﬂ(v,w) T O
Lemma 4.4.7. We have ¢° = qs for all s € Sio_ye)-

Proof. Let x € Ay, such that 9, s, = {Hs}. Since Hi rel.zy,s20 = {Hs}, by Proposition [3.8.21] and
Equation (4.4.5) we have

(@9,) = (2=1) @), +¢2 2%, and (Peu)’=(ge—1) Postqe o1 (447a)
Hence, using Proposition the lemma follows once we show that there exists ¢ € C* such that
(¢ @p0)” = (g = 1) (¢ Pa) + 43 Pt (4.4.7b)

Recall that we have an isomorphism

. Kz sz ~ . . Kg sT
I55% dez’ (pz) — 1nf(1nng‘ (pg)) Q Kz, sz-

. . . . K9 . .. ..
Since the representation inf (md Kg)’” (pg)) is trivial on K ¢z.04, and the restriction of the represen-
. .. . ey KO .
tation ky sp t0 Ky se04 is irreducible, for any @ € Endg, , (mf (1ndK’3’” (pg)) ® Kx,sx), there exists

0
a unique ®" € Endgo (indgﬁ‘” (p9)) such that & = & ®idy, . Thus, we have an isomorphism
of C-algebras
xT,ST 3 K:(L)',sw 0 ~ 3 Kz,sx
n """ Endgo (deg (p3)) — Endg, ., (dew (pz))

defined by
ngac:,sx ((I),) — (I:,sz)—l ° ((I)/ ® ide Sw) ° I;,s:c‘
Since we assume that the family K satisfies Axiom with the group KV, we have a lift of

T,5%

sin K gsx, which we also denote by s. Combining this with Axiom 1) and Remark we
3.5.26

have KgsKg Cc KY and K,sK, C K, sz Hence, according to Lemma 2.2.5| and Lemma

T,5%

we have . K0
. G . x,sT
@275 € Endgo(p (deg(F) (pg))Kg L= Enngysx (deg‘ (pg))

and
By s € Bndgp) (indil ™ (02)) =~ Endg, , (indj ™ (pa).

We regard @2,5 and @, s as elements of the latter spaces and claim that there exists ¢ € C* such
that
ngasx ((1,275) =c- q)x,s-

Since n;°" is an algebra isomorphism, the first equation of ([4.4.7a) would then imply Equation
(4.4.7b)) as desired.
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It remains to prove the claim. The proof is essentially the same as the proof of Lemma [£.3.6]
According to Proposition [3.4.18 and Lemma(3.5.26}, it suffices to show that supp ((nz"*") ™! (®4,5)) C
K9%sK?. As explained in the proof of Lemma we have (I;*)™1 (Vo ® Vi) = V,,, where we

. . . KO Ky sa
regard k; as a K, -subrepresentation of k; s, via K, — ind ;" Zomh(
xT

since supp (®; ) = K;5K,, Lemma implies that

K2)|K, 2 Kz se|K,. Moreover,

(D5 0 (I25) 1) (Vo @ Vi) = @as (V) C indﬁzm (V) - (4.4.7¢)

Since we have s € Kg’sx and K2 C Kg,sx, we obtain from Axiom that the element s and
the group K? normalize the group K sz:0+, and hence

0 0 0 0
K;sK,; C KxKx,sx;OJrSKsz,sz;OJr = K$3K$Kx,sx;0+

by Remark [4.3.3, Using the definition of I;**", this allows us to deduce I;"*" (ind?ﬁSKz (me)> C
indglgd(g (Vo) ®Vi,,. Precomposing with (4.4.7d), we have (I o @, o (I"™*) ™) (V0 ® Vi) C

ind?gSKg (Vo) ® Vi, Thus, we obtain that ((n:*")™" (®s,s)) (Vo) C indﬁ%SKg (Vo). Using

Lemma we conclude that supp ((7z*") ™! (®,,5)) C K2sK?. O

Theorem 4.4.8. We assume the following:

(1) The family K° satisfies Axioms|3.4.1 and|3.4.9 with the subgroup N(pMO)go]Mo of N(pa10) (o] 0

(2) The family K satisfies Axiom |3.4.1| with the subgroup ]\7(,0]\/10)56()]1\40 of N(pa ) zo]as -

@

x0 [zo]

(3) The group W(pMo)? Lo satisfies Axiom|3.7. 1| with a normal subgroup W (ppro)ag of W(pao)

(4) The family K° satisfies Aziom with the group K, . = K9 . for each s € Sio,q and
x € Agen such that $z 52 = {H,}.

We also assume Azioms |4.1.3, |4.2.1, and|{.3.1. We fix a subset C~1 C C* ~ {1} as in Choice
choose a family T° as in Choice 3.10.5 and let T denote the family satisfying the conditions
in Proposition[{.4.4 Then the map

T = (Z(pwy)) " 0 Z(pY,): H(GO(F), 1)) — H(G(F), pay)

18 a support-preserving algebra isomorphism.

Proof of Theorem [{.4.8. Combine Theorem [3.10.10| with Lemma and Lemma [.4.7] O

We will provide a more explicit description of Z in Theorem |4.4.11| below. In order to do so, we
keep the set-up from Theorem and describe 7 more explicitly.

Lemma 4.4.9. There exists a unique quadratic character € : N(pMO)[?;O} , — {£1} that factors
M

through N(pMo)EO]MO —» W(pMo)go]MO and is trivial on Q(py0) such that

T, =e(n) - T° @ Rpr(n)  for every n € N(pppo)y

[xO]]wO :
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Proof. Let w € W(pMo)go}MO and choose a lift n € N(pMO)[Zo}Mo of w. Since T}, and T @ Fpr(n)

are non-zero elements in the one-dimensional space Hompg,, ("par, par), there exists e(n) € C*
such that T;, = €(n) - TO ® Far(n). We note that since %j; is an extension of #y; and we have
pa == inf (pp0) ® kpr, our choices of 7O and T imply that the scalar e(n) does not depend on
the choice of lift n, but only on w. We write e(w) = e(n) for any lift n € N(pypo)

[x()]]\/IO
we Wip MO)EO}MO' Since we chose the family 7 to satisfy the condition in Proposition [4.4.4 we

have e(t) = 1 for all t € Q(py0). We will prove that e(w) € {£1} for all w € W (ppp0)ag. First, let

s € Sio_pe)- We fix a lift ng in N(pMO)g«O] . of s and note that n ! is also a lift of s = s~!. Using
M

the definitions of /LTO and u”, we obtain

1 (s,s) - Ty = Tp, oT,—1 =€ ( o T0,1> ® (R (ns) o Rar(ngh))
70

=€(s)’u” (s,8) - TP @ Fpr(1) = (S)QMﬂ(s,s)-Tl.

According to Lemma [3.8.10] and Lemma we have u7"(s,s) = ¢° = qo = u7(s,s). Thus,
we conclude that e(s)? = 1, that is, €(s) € {£1}, as desired. Next, we consider a general w €

W(pao)ag. We fix a reduced expression w = s18o--- s, for w. We fix lifts of s; for 1 < i < r in
N(,oMo)[Q;O] , and denote them by n;. We write n =ning---n, € N(pMO)E:o]Mo' Then according to

Proposition we have TV = Tr(z]1 oTTQ2 o-- .oT,?T and T,, = T),,0Ty,0---0T,, . Hence, we obtain
that e(w) = [[i_; e(si) € {£1}. Moreover, since W (pys0)at is a Coxeter group, the arguments
above imply that the map w — e(w) defines a group homomorphism W (py0)ag — {£1}. To
prove the lemma, it suffices to show that the character e: W(py0)ag — {£1} is invariant under
the conjugation action by Q(py0). Let t € Q(pp0) and w € W (ppso)ag with lifts ¢ and n in
N(pas )EZ Lo’ respectively. Then according to Proposition|3.10.7, we have Tgﬁ_thQ = Tf(:z = Ttgng,

hence Tt0 1 = T?O oT%0 (TtQ) and Ty 51 = Tyo Tn o T !, Thus, the definition of € implies that
e(twt™1) = €(w), as required. O

Remark 4.4.10. The quadratic character € from Lemma [4.4.9) extends uniquely to a quadratic
character of K M that is trivial on Kjs. Hence e- ks is a smooth representation of K s that extends

kn- Thus if we had chosen € - Ky as the lift Kps of rp in Axiom [£.1.2] then we would obtain
T, =T ® Fpr(n) for every n € N(pMo)go]Mo.

The above allows us to describe the isomorphism of Theorem [4.4.8) more explicitly. Note that, as
explained in Remark 4.4.10] if one chooses ks appropriately, then e = 1.

Theorem 4.4.11. We assume the same set-up as in Theorem [{.4.8 Then there exists a unique
quadratic character € : N(pMO)go} . {1} that factors through N(PMO)E o™ W (ppro)?y
M

0]p70 [zo] pr0

and is trivial on Q(ppo) such that the isomorphism I is given as follows. If ¢ € H(G(F),p2,)

is supported on KO nKQ for some n € N(pMo)go] .+ then Z(p) is supported on KynKg, and
M

satisfies

0 0 0 /2
Z(p)(n) = du - pln) ® (c(n) - Ras(n)  with %:(‘@m /EKZZQEEO%D ecr.
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Proof. If ¢ € H(G(F),p},) is supported on K2 nKQ for some n € N(pMo)? Lo’ then ¢ is a

Zo
[Q:?vo]Mo' By the definition
of the C-linear isomorphism Z, we have Z(¢%) = ¢,,. Hence the claim follows using Lemma [3.5.26
and Lemma [£.4.9 O

scalar multiple of gog,ovw = ¢ where w denotes the image of n in W (py0)

4.5 Preserving the anti-involutions

In this subsection, we keep the notation from the previous subsection, and we also assume that
C admits a nontrivial involution ¢ — ¢, and that all of the assumptions of Theorem hold.
We fix a family 79 as in Choice and let 7 denote the family satisfying the conditions in
Proposition We say that a representation (mw, V') of a group H is unitary if there exists an
H-invariant, positive-definite Hermitian form ( , ) on V.

Lemma 4.5.1. Suppose that the representation Ky of K is unitary. Then the family T satisfies
all the properties in Choice|3.11.5

Proof. Let t € Q(pap). We will prove that ¢f = ¢,—1. Since ¢f, -1 € H(G(F), pay)i-1, it
suffices to show that o} (n™!) = ¢,-1(n~!) for a lift n € N(pMo)[ZO] , of t. According to Equation
M

(3.11.1)), it suffices to show that (p,—1(n~1) - VW) p,, = (U, 01(n) - W)y, for all v,w €V, . We

may suppose that v and w are of the form v = vg ® v, and w = wy ® wy, for vy, wy € Vpgo and

on Vo =1V,
z0

U, W € Vi, . We fix a Kgo—invariant, positive-definite Hermitian form ( , ) g0

P2
on Vi, = Vi,,. Then the Hermitian

® Vieps- Moreover, since (K, pay)

and a K -invariant, positive-definite Hermitian form (& ey
form ( | )pgo ®( , )&y is a Ky-invariant form on V,,, =V,
is a quasi-G-cover of (K, pa), the Hermitian form ( , ), ® (, )z, is also a Ky -invariant
form on V,,, = V),,. Hence, we may suppose that { , ), = (, >ng ®( , )z According to

Theorem we have

0 0 0
@t(n) cw = |KI0 (Kt:vo N Kxo)}
|K€Eo/ (Ktxo N Kflio)|

1/2
) @ (n) - wo ® Fag(n) - wy

and 12
‘Kgo (Kz?*lazg N Kgo)

\Kmo/ (Ky-14, N Kxo)\

e (nh) v @ Far(nh) - v,

Pe—1 (n_l) U=

Hence, we have

0 0 0 1/2
5/ (K2, N KT,

| Koo/ (K150 N Kay)|

(-1 (n™1) v, w),, = (ep-1(n71)- V0, Wo) 50, - (Far(n™h) - v, w7y,

(4.5.1a)
and

0 0 0 1/2
(v, 0t(n) - w),)mO — ('éiz% Egzo 2;?2”) (Uﬂng(n) . w0>p20 Avg, Rar(n) - wN>EM, (4.5.1b)
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Since t € Q(par), we have dic_rel(z0,t  20) = licrar(t) = 0. Hence, according to Corollary [3.5.16
we have ‘KZO/ (Kt*120 N Kxo)‘ = ‘thlxo/ (Kt 120 N Km0)| Combining this with Axiom 1’
we obtain that

| Koo/ (K159 0V Ko )| = [ Kim100/ (Kim100 0 K )| = [Kag/ (Kiag 0 Kyl - (4.5.1¢)
Similarly, we can prove that
‘Kﬁgo (KO lzo N Kgo)} = ‘Kgo/ (K?:co N Ka?o)‘ : (4'5'1d)

X

Since the family 70 satisfies all the properties in Choice [3.11.5] we have

(s (n1) - vy, = ()" (n0) - v, wohyg = (o0, () - wo) o (45.10)

Moreover, since the Hermitian form ( , )z,, on Vi, = Vj,, is K Mm-invariant, we have
(Far(n™1) - v, w7y, = (vx, Bar(n) - wad,, - (4.5.1f)
Combining (4.5.1c)), (4.5.1d), (4.5.1¢]), and ( ) with and (£.5.1D]), we obtain that
(o1 (1) v, w)p, = (v, 00(n) - w),, , as de51red ]

Corollary 4.5.2. We assume the same set-up as in Theorem [{.4.8 We also suppose that there
exists a Kpyr-invariant, positive-definite Hermitian form ( , )z, on Vi,, = Vi Then the iso-
morphism

T: H(GO(F),ng) — H(G(F)apxo)
in Theorem [{.4.8 preserves the anti-involutions on both sides defined in Section[3.11].

Proof. The corollary follows from Proposition and Lemma [4.5.1 O

4.6 Application: Equivalence of Bernstein blocks

Throughout this subsection, we suppose that C = C. We only do so because the literature on types
currently makes this assumption.

Let Rep(G(F')) denote the category of smooth C-representations of G(F'). The Bernstein decom-
position (see [Ber84]) expresses this category as a direct product of full subcategories:

Rep(G H Rep® (G

Here J(G) is the set of inertial equivalence classes, i.e., equivalence classes [L, o|a of cuspidal pairs
(L,o) in G, where L is a Levi subgroup of G, o is an irreducible supercuspidal representation
of L(F'), and where the equivalence is given by conjugation by G(F') and twisting by unramified
characters of L(F'). If s = [L,o]q, then the block Rep®(G(F')) consists of those representations
(m, V) for which each irreducible subquotient of 7 appears as a subquotient in a parabolic induction
of o ® x for some unramified character x of L(F).
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Let K denote a compact, open subgroup of G(F), and (p, V},) an irreducible smooth C-representation
of K. Let Rep,(G(F)) denote the full subcategory of Rep(G(F)) whose objects are the C-
representations (m,V) of G(F') generated by their p-isotypic subspaces. Following [BK98, (2.8)
and Theorem 4.3(ii)], we have a functor

M,: Rep,(G(F)) — Mod—H(G(F),p) given by 7+ Homg(p) (indf((F) (p),m),
where Mod—H(G(F), p)
the right action of H(G(F),p) on Homg(p) (indIG{(F) (p),m) is given by precomposition using the
5 Endgp (ind5 (p) in @23).

p)
For s € J(G), the pair (K, p) is called an s-type if Rep,(G(F)) = Rep’(G(F)). More generally, if
S is a finite subset of J(G ) then the pair (K, p) is called an &-type if

denotes the category of unital right modules over H(G(F),p). Here,

isomorphism H(G(F),

Rep,(G(F)) = Rep®(G(F)) = [ [ Rep*(G(F))
5€6

In either case, by [BK98| (4.3) Theorem (ii)], the functor M, gives an equivalence of categories
Rep®(G(F)) = Rep,(G(F)) = Mod—H(G(F), p). (4.6.1)
We write
I*: Mod—H(G(F), pzy) — Mod—H(G°(F), p3,) (4.6.2)

for the equivalence of categories associated to the isomorphism Z: H(G?(F), p% ) — H(G(F), pay,)
of Theorem [4.4.8

Theorem 4.6.3. Let & C J(G) and Gy C J(G°) be finite subsets. We suppose that the pairs

(K, pzy) and (KOO, pxo) are an S-type and an So-type, respectively. Then the functor (1\/ng0)_1 o
I* oM, gives an equivalence of categories

Rep®(G(F)) = Rep™ (G°(F)).
Proof. This follows from combining the equivalences in [£.6.1] and [4.6.2] O

Theorem 4.6.4. We choose Haar measures v and v° on G(F) and G°(F), and let v and 0°
denote the corresponding Plancherel measures on the Borel spaces rr® (G(F)) and IrrY° (GO(F)) of
irreducible, tempered representations in Rep®(G) and Rep®°(GC). We suppose that there exists a
I?M—im)armnt, positive-definite Hermitian form ( , )z, on Vi, = Vi,,. Then the isomorphism

Z: H(GO(F),p8,) — H(G(F), pxy) of Theorem induces a homeomorphism
VO(K3,)
V(Ka)

0.

J: Tiro(GV(F)) — It (G(F)), such that Do J = dim ky,

Proof. The support-preserving isomorphism of Hecke algebras from Theorem [£.4.§| preserves the
anti-involutions by Corollary and hence by [BHKII) 5.2 Proposition] is an isomorphism of

Hilbert algebras as defined in [BHK11l §4.1]. From [BHKII) §5.1], one has a homeomorphism
0
T+ Iafo(GO(F)) — I (G(F)), such that 55207 = dlmi*o’

the fact that dim p,/ dim pQ, = dim Kg,. O

50, Our result then follows from
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5 Hecke algebras of depth-zero pairs

In this section, we will show that all of the axioms of Section [3| apply to the special case of a
pair (Kz,,pz,) where Ky, is a normal, compact, open subgroup of G(F), that contains the
parahoric subgroup G(F)z,0, and the restriction of p;, to G(F)g, 0 contains the inflation of a
cuspidal representation of Gy, (f) = G(F)z0,0/G(F)a.0+. Thus, Theorem applies to such
pairs. This means that we obtain an explicit description of the corresponding Hecke algebras as a
semi-direct product of an affine Hecke algebra with a twisted group algebra, see Theorem The
special case where K, = G(F')4,0 and C = C has already been treated by Morris [Mor93, Theorem
7.12]. The resulting types describe certain finite products of Bernstein blocks. Our construction
also includes the case K, = G(F)z,, when the resulting types describe single Bernstein blocks.

5.1 Construction of depth-zero pairs

We recall the notion of a depth-zero G-datum following Kim and Yu ([KY17]), but adjusted to our
more general coefficient field C, from which the pair (K, pz,) Will be constructed.

Definition 5.1.1 (cf. [KY17, 7.1]). A depth-zero G-datum is a triple ((G, M), (zo,), (K, pam))
such that

(1) M is a Levi subgroup of G.

(2) 2o € B(M,F) is a point whose image under the projection to B*(M, F) is a vertex, and
v: B(M, F) — B(G, F) is a 0-generic admissible embedding relative to ¢ in the sense of [KY17,
Definition 3.2], i.e., M (F)uq0/M(F)zo0+ = G(F)i(20),0/GF)i(z0),0+- We use this embedding
to identify B(M, F') with its image in B(G, F').

(3) K is a compact, open subgroup of M (F'),, containing M (F)z,0, and pas is an irreducible
smooth C-representation of Ky such that pass Fag is the inflation of a cuspidal representa-
tion of My, (f) = M(F)ImO/M(F)xo,O-F'

0

If C = C, a depth-zero G-datum is used to construct types for all depth-zero Bernstein blocks based
on works of Moy and Prasad ([MP96]) and Bushnell and Kutzko ([BK98]), which is a special case
of the construction below.

From now on, we let ¥ = ((G, M), (zo,), (K, pm)) be a depth-zero G-datum. We note that for
each x € Ay, = zo + (X«(An) ®z R) such that ¢« : B(M, F) — B(G, F) is 0-generic relative to z,
the triple X, = ((G, M), (z,¢), (K, pM)) is also a G-datum. For x € A,,, we set

Ko=Ky-G(Flap and Koy = G(Faos, (5.1.2)

which are compact, open subgroups of G(F'). We note that if ¢ : B(M, F) — B(G, F) is 0-generic
relative to x, then we have K, = Ky - K, 4 since Kjs contains My, o = M. In this case, by
IKY17, 4.3 Proposition (b)], the inclusion K C K, induces an isomorphism

Ky /M(F)poy — Kif/ Ky y,

and we define the irreducible smooth representation p, of K,/K, , as the composition of pys with
the inverse of the isomorphism above. We also regard p, as an irreducible smooth representation
of K, that is trivial on K, . If C = C, the pair (K, p;) is a type.
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If Ng(M)(F)(z,],, normalizes the group Ky, e.g., if Ky = M (F)z, or M (F)z, 0, then we will show
in Section [5.3|that the objects G, M, xo, Kas, pas and the families { (K, Ky 4, p2)} (for appropriate
z € Ag,) satisfy all the desired axioms of Section [3|for the choice of N(pp)Y , = N(oM) [wo]as -

[zo]

5.2 Affine hyperplanes

In order to apply Section [3|to the objects introduced in Section we also need an appropriate set
of affine hyperplanes as in Section We define these hyperplanes as follows. For a maximal split
torus S of G, let ®(G, S) denote the relative root system of G with respect to S and let ®,4(G, S)
denote the (relative) affine root system associated to (G, S) by the work of Bruhat and Tits [BT72].
We fix a maximal split torus S of M such that zg € A(G, S, F). For a € ®.5(G,S) \ ®.5(M,S5),
we define the affine hyperplane H, in A(G, S, F) by

H,={x € A(G,S,F) | a(x) =0}.

Since a & ®,g(M, S), the intersection A, N H, is an affine hyperplane in A;,. We define the locally
finite set $g of affine hyperplanes in A;, by

Ns ={ Az, NHy | a € Pog(G,S) N Pag (M, S)}.

Lemma 5.2.1. The set of affine functionals {a|AID | a € @u (G, S) \ Pagr (M, S)} on Ay, and the
set $Hg do not depend on the choice of a mazximal split torus S of M.

Proof. Let S’ be another maximal split torus of M such that zo € A(G,S’, F). Then there exists
an element m € M (F)y, o such that mSm~! = §’, and we obtain a bijection between ®,4(G,S)
Q.5 (M, S) and Puq(G, S") \ Pug(M, S’) by sending a € Pu5(G, S) \ Pog (M, S) to the affine root
ma € ®uq(G,S") N @ag (M, S') defined by (ma)(z) = a(m™1x) for z € A(G, S, F) = mA(G, S, F).
Since the group M (F).,,0 acts trivially on A, for every a € ®.q(G,S) \ Pag (M, S), we have
(ma)(z) = a(z) for all z € Ay, ie., (ma)|a,, = ala,, and

Ay NHy ={z € Ay, | a(x) =0} = {z € Ay | (ma)(x) =0} = Ay N Hpng.

Thus, we obtain that $Hg = Hg. O

Based on the lemma, we can set $) = )¢, where S is any maximal split torus of M such that
z9 € A(G,S,F). Then ¢ : B(M°, F) — B(G°, F) is 0-generic relative to x € Ay, if and only if = is
not contained in any affine hyperplane H € §, that is, z € Agen = Az (U mes H ) In particular,
we have zg € Agen.

Lemma 5.2.2. The action of Ng(M)(F) on Ay, preserves the set $).

[z0]ns

Proof. Let n € Ng(M)(F)z),,- We fix a maximal split torus S of M such that zo € A(G, S, F).
Then the torus nSn~! is also a maximal split torus of M, and we have

zo € nxo + (X.(Ay) @z R) CnA(G, S, F) = A(G,nSn™ 1, F).

Since the set $Hg does not depend on the choice of such a maximal split torus of M, we obtain that
n(HNs) = Npgn-1 = HNs. Thus, we conclude that n(H) = H. O
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5.3 The structure of Hecke algebras attached to depth-zero pairs

From now on, we suppose that the group Ky is normalized by Ng(M)(F)(z,),,- For instance, if we
choose Ky = M(F)g, or M(F')z,,0, then this assumption is satisfied. We impose this assumption
to show that the support of the Hecke algebra attached to (K, p,) is given by K, 'N(PM)[:I:O]M - K,
see Proposition below. If C = C, then the case of Ky = M(F'),;, corresponds to types for
single Bernstein blocks, while the case Ky = M (F')y, 0 is the one that Morris ([Mor93]) studied.

In this subsection, we will prove Theorem i.e., that the Hecke algebra H(G(F), ps,) is isomor-
phic to a semi-direct product of an affine Hecke algebra with a twisted group algebra, by verifying
all the required axioms from Section [3] that allow us to apply Theorem We recall that we
have constructed in Section the family

K ={(Ky, Kz +, (pa, sz))}xeAgen

of quasi-G-cover-candidates as defined at the beginning of Section We will now prove that the
family also satisfies Axioms [3.4.1| and [3.4.3| for the group N(pM)[Q;O]M = N(PM) wo] s -

Lemma 5.3.1.

(1) For every x € Agen, we have

(a) Kpy =nKyn™' and Kyy = nK,n~1 forn € N(pa10) [zo]
(b) the pair (K, ps) is a quasi-G-cover of (K, par),

(¢c) Kp = K- Ky y,

(d) Ko = (Ko NU(F)) - (Kp N M(F)) - (Kpw NU(F)) for allU € U(M).

MO0’

Moreover, the group K, + N M(F) is independent of the point x € Agen.

(2) For x,y,z € Agen such that d(z,y) + d(y,z) = d(z, z), there exists U € U(M) such that

K,NU(F)CK,NUF)CK.NU(F) and K.NU(F)CK,NU(F)C K,NU(F).

Thus, the family K satisfies Aziom [3.4.1] for the group N(pn)y . = N(pa ) (zo] s -

[zo] ar

Proof. The first claim follows from the definitions and [KY17, 4.3 Proposition, Theorem 7.5]. We
will prove the second claim. Let z,y,2z € Agen such that d(z,y) + d(y, z) = d(z,2). Recall that
z — x is an element of X, (Ays) ®z R. We take U € U(M) such that a(z — x) > 0 for any non-zero
weight o € X*(Ajpr) occurring in the adjoint representation of Ay on the Lie algebra of U. Then
the definition of the groups K, and K, implies that

7( (5.3.1a)
(F).
We will prove that

K,NU(F)C K,NU(F) C K,NU(F).
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Suppose that K, NU(F) € K, NU(F). Then the definitions of K, and K, imply that there exists
a € ®.4(G,S) such that the gradient Da € ®(G,S) occurs in the adjoint representation of S on
the Lie algebra of U, and

a(x) >0 and a(y) < 0.

In particular we have Ay, N Hy € $54. Since d(z,y) + d(y, z) = d(x, z), Lemma implies that
Ny HDy» C Ha.. Hence, we also obtain that Ay, N H, € ;.. Since a(z) > 0, we have a(z) < 0.
Then the definitions of K, and K, imply that K, N Upy(F) € K, NUpa(F'), where Up, denotes
the root subgroup corresponding to Da. However, this contradicts . Hence, we obtain that
K,NU(F) C K,NU(F). Similarly, we can prove that K, NU(F') C K, NU(F). Replacing x with
z and U with U, we also obtain that

K.NUF)CK,NU(F)CK,NnU(F).

This proves the second claim. The first two properties of Axiom follow from Lemma
the remaining properties from the first two claims proven above. O

Next, we will prove that the family K satisfies Axiom [3.4.3] The following proposition is essentially
a translation of [Mor93, 4.15 Theorem)] into our slightly more general setting.

Proposition 5.3.2. We have

for all x € Agen, that is, the family K satisfies Aziom|3.4.5 for N(pM)[QZO]M = N (oM ) wo]ps -

To prove Proposition we prepare the following lemma. For a maximal split torus S of G and
x € A(G, S, F), we write

Bt (G, S) = {a € Bo(G, S) | a(z) = 0}

Lemma 5.3.3. Let x,y € Ay,. As above, we denote by S a maximal split torus of M such that
zo € A(G, S, F). Suppose that x € Agen. Then we have

(I)aff,x(G7 S) C (I)aﬂ,y<Gu S)

Proof. Let b € @ ,(G,S). Since x & H, for all a € ®,g(G, S)\Pag (M, S), we have b € ®o5(M, S).
Thus, using that y—x € X, (An)®zR, we obtain b(y) = b(z+(y—=x)) = b(x)+Db(y—=z) = b(x) = 0.
Hence @5 (G, S) C Pag (G, S). O

Proof of Proposition[5.3.2 Let 2 € Agen. It suffices to prove that K- N(par) i), - Ko 2 I (02)
because the reverse inclusion follows from Corollary Hence let g € Igr)(pz). We fix a
maximal split torus S of M such that =y € A(G,S,F). According to [KP23, Theorem 7.8.1],
we have G(F) = K, - Ng(S)(F) - K. Hence, we may suppose that g € Igp)(pz) N Na(S)(F).
Since Hompg, nor, (%, pz) # {0}, and the representation 9, is trivial on the group 9G(F)z 04, we
obtain that p, has a non-zero (K, N 9G(F)z 0+ )-fixed vector. In particular, we obtain that the
representation p, has a non-zero (G(F')z0 N9G(F)g 04 )-fixed vector. We have that

(G(F)z0 NIG(F)z04) G(F)0+/G(F)z0+ = (G(F)z0 N G(F)gzo0+) G(F)z0+/G(F)z0+
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is the group of f-points of the unipotent radical of a parabolic subgroup of G;, and the restriction
of p, to G, (f) = M, (f) is a cuspidal representation, so we obtain that

(G(F)z0 NG(F)ga0+) G(F)zo+/G(F)e 0+ = {1}.
In particular, we have
(M(F)a0 N M(F)gz04) M(F)a,0+/M(F)eo0+ = {1}.
Since the point [x]y is a vertex in A™4(M, S, F), this equation implies that [gz]ys = [2]as, that is,
gr € v+ (Xu(Aym) @z R) = Ay,

Since * € Agen, Lemma implies that ®.g ,(G,S) C Pug go(G,S). Since |Pag (G, S)| =
|9Pasr 2(G, S)| = |Pasr g (G, S)|, we obtain that ®.g,(G,S) = Pug g»(G, S). In particular, we have
gr & H, for all a € @uq(G,5) \ @og (M, S). Since z,gx € H, for all a € @oq(G, S) \ @ag (M, 5),
and the projection [gz]yr = [z]ar is a vertex, we have

Ay = ( ﬂ ker(Da))O = ( ﬂ ker(Da))O =9A,.
ac®,g . (G,9) a€Pugr, g2 (G,S)

Thus, we obtain that g € Ng(M)(F'). Moreover, since gr € Ag,, Corollary implies that
9 € Ng(M)(F)zo]p- As Na(M)(F)(g),, normalizes Ky, this also implies that g normalizes the
group K. Combining this with the assumption g € Ig(py(pz) and Lemma we obtain that
9 € Ne(ry(pm). Hence g € Ngry(par) N NG (M)(F) w1 = N (00 ) (o) s - O

We recall from Definition B.4.15] that
W (or) 10y = Noan) g/ (N(an) oy VM) = N(oa0)gogar/ Knr
[zo]ar [zo] s (o]l [zo]nr

and from Section that Wiel = (s | H € $ire) with set of simple reflections Si_e1, see
Notation To prove Axioms and we first introduce some notation.

Notation 5.3.4. Let x,y € Agen with d(z,y) = 1. We denote by H,, € $ the unique hyperplane
that satisfies $,, = {Hz 4} and define the compact, open subgroup K, , of G(F) by K, = K}, =
Ky - G(F)py, where h € Hyy is the unique point for which h =z +¢ - (y — ) for some 0 <t < 1.

Since d(z,y) = 1, the definition of $) implies that we have G(F')30, G(F)y0 € G(F)p0. Thus, we
have K, Ky C K, 4.

Proposition 5.3.5.

V)
[xo]

V)
[zo]mr

(1) There exists a normal subgroup W (par)ag of W (par) such that the action of W (par)

on Ay, restricts to an isomorphism
W(ﬂM)aff > Wicrel,

that is, Axiom is satisfied. Moreover, the elements of W(par)ag can be represented by
elements in Gept,o NN (par) where Gept o denotes the kernel of the Kottwitz homomorphism

on G(F).

[QC()]M )
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(2) For every s € Siyel and © € Agen such that 4 . = {Hs}, we have

(N(pM)[mo]M N Ka:,sa:) /KM = {1,5},

where Ky sp denotes the group in Notation[5.3.4 Thus, the family K satisfies Aziom|[3.8.3 with
N(pM)EO]M = N(pM)[zo]n; and the group K;“S = Ky o0 for each s € Sik.yel and x € Agen such

that $z.s0 = {Hs}.

Proof. First, we will prove . Note that we have Gepro N M (F)zy = Gept,o N M(F)z,,0. Hence,
according to Lemma to prove , it suffices to show that for all H € $Hx_rel, there exists an
element

S}{ S (cht,o N N(pM)[m()]J\/j) / (GCpt,O N KM)

such that the action of s7; on A, agrees with the orthogonal reflection sy. Let H € iy, and
2,y € Agen such that 9, , = {H} and

®$|y o @y|f'7 g C- idindi(:)(pz) . (5.3.5&)

Since K, K, C K, 4, the definitions of ©,,, and ©,, imply that

x|y ylz

e Ky
Oy © Oy € Endg(p) (1ndKiF) (pw))K ~ Endg, , (deI’y (pw)) ,

z,yY

where the isomorphism follows from Lemma [2.2.8, Hence, (5.3.5a)) implies that the dimension of
the C-vector space

Bndre,, (indf" (o)) = H(Koy. p2)

is greater than one. According to Proposition [3.4.18] a basis of the space H (K, p;) is indexed by
the group
(N(pM)[xO]M N K$,y) /KM C W(PM)Q

[zo]ar”

In particular, we can take a non-trivial element s}, € (N(PM)[J:O]M ﬂKx,y) /K. Recall that
Ky = Ky - G(F)p o, where h € H is the unique point such that h = x + ¢ - (y — «) for some
0 <t < 1. Hence, we have

s € (N(par)wolns N Kay) /Knr =~ (Gho VN (001 fwo]ns) / (Gro N Kar)
C (cht,() N N(pM)[a:O]M) / (cht,O N KM) s

where the isomorphism is given by the inclusion of G}, o into K, ,. We will prove that the action
of the element s’; on the space A, agrees with the orthogonal reflection with respect to the affine
hyperplane H. It suffices to show the following three properties.

(i) The gradient of the action of s; on A, preserves the inner product ( , ) on X, (An)®zR.
(ii) The action of s’ on A, is nontrivial.

(iii) For any z € H, we have s;(z) = z.
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The first property follows from the fact that ( , )as is preserved by Ng(M)(F). The second
property follows from the facts that s%; # 1 and that the group (cht,oﬂN(pM)[$O]M)/(GCpt70ﬂKM)
acts faithfully on A, by Remark [3.4.16| combined with Gepi0 N M (F)zy = Gept,o N K.

We will prove the third property. It suffices to show that there exists a non-empty open subset U of
H such that s (z) = z for all z € U. Since 9., = {H}, the definitions of $) and h and the parahoric
subgroups imply that there exists an open ball U in H with center h such that G, o = G, for
all z € U. Hence, we have s € (G0N N(prr)izolar) / (G0N Kyy) for all z € U. In particular,
sy(z)=zforall zeU.

Next, we will prove . Let s € Skyel and © € Agey such that $, ., = {H}. By Part the
element s can be represented by an element in Gepro N N (PM)[:cO] v+ Which we also denote by s.
Since s fixes H pointwise, we have s € Gept o ﬁN(PM)[a:O]M NGy for any h' € H,. Hence s € Ky 5.
Thus (N(par)zo)y N Kayse) /Knr D {1,s}. If sy € (N(par)zo]y N Kaysa) /K is nontrivial, then
the same arguments as in the proof of Part show that that s = s. O

Now we have shown that all the axioms of Section [3] are satisfied in the setting of the present
section. Thus, we obtain the following result.

Theorem 5.3.6. We have an isomorphism of C-algebras

H(G(F)vao) = C[Q(pM)HuT] X HC(W(pM)afLQ)y

where p7 denotes the restriction to Q(par) x Qpar) of the 2-cocycle introduced in Notation m
for a choice of a family T satisfying the properties of Choice and q denotes the parameter
function s — qs appearing in Choice . If C admits a montrivial involution, then we can
choose T as in Choice and the above isomorphisms can be chosen to preserve the anti-
involutions on each algebra defined in Section|3.11]

Proof. The statement follows from Theorem [3.10.10|and Proposition whose assumptions are
satisfied by Lemma [5.3.1], Proposition [5.3.2] and Proposition [5.3.5 0

In the case where K, is a parahoric subgroup of G(F), this result was proven by Morris ([Mor93|,
7.12 Theorem)).

List of axioms

Axiom [34.1] p. [20]
Axiom [3:43] p. 2]
Axiom B.71] p. B9
Axiom [3:82] p. (3]
Axiom [£.1.2] p. [62]
Axiom .21 p. [63]
Axiom [£.31] p. [64]
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Selected notation

( )M7

09)
1/2 in a superscript,

Agen 3 @
-AIC—reh

Ag,, [16]

C (coefficient field),
C>17 @
Cen, @
Caxw @

d( ’ )7
dlC—rel( ; )7

., I
GY,

H(G(F), (K, p))
H(G(F), p),
H(G(F). p)y.
H(G(F). pa)o;
H(K, p),
%(W(pM)affa Q)v
9, [
~6/C—1relv

jFJIC—rel;z,ya

Hey, [18

H,,[T7]

Hy, [42]

id,

ind (V,) (K’ € G(F) a subset),
Y,

KM, @

KM

Ry, @

K.y @

K,

()" (C-conjugate-linear anti-involution),
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¢ (characteristic of C),
licvel (length function),

(G, S),[77
o, 169

s (69

q)aff(Ga S)v
(I)aff,:c(Ga S)a
Dy, [36]

Sowal?’lsl
Dy, 3]
Dz [36]

qs, pO]

[

pu, 62
PM0=|6'_2|

pa, 20, [63] [76]

SH, @
S’C-rela @
¥, [76]



U(M), |12

VIC-rel ) m
VIC—rel 7

WIC—rel ’ @

W(pM)aff,

W(pMO)aff7 @

W(PM)ECO}

M’
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