In the following an empty intersection of subsets of X will be X .

Problem 1 (6 points). For a topological space X , show the equivalence of the following conditions:

- We have $X \neq \emptyset$, and if U and V are non-empty open subsets of X, then $U \cap V \neq \emptyset$.
- If $n \in \mathbb{N}$ and $(U_i)_{i=1}^n$ are non-empty open subsets of X then $\bigcap_{i=1}^n U_i \neq \emptyset$.
- If $n \in \mathbb{N}$ and $(A_i)_{i=1}^n$ are proper closed subsets of X then $\bigcup_{i=1}^n A_i \neq$ X .
- We have $X \neq \emptyset$ and every open subset of X is connected.
- We have $X \neq \emptyset$ and every non-empty open subset of X is dense in X.

Definition 1. A topological space is called irreducible if it satisfies these equivalent conditions. A subset of a topological space will be called irreducible if it becomes irreducible when equipped with the induced topology.

Problem 2 (1 point). Let X be a topological space, $x \in X$ and $\{x\}$ the closure of X. Show that $\overline{\{x\}}$ is an irreducible subset of X.

Definition 2. We call x a generic point of the irreducible closed subset $Z \subset X$ if $Z = \{x\}.$

The following separation axioms will be important in what follows:

- $\mathbf{T_0}$: If $x \neq y$ are points of X, then there exists a subset $M \subseteq X$ which is open or closed and such that $x \in M$ and $y \notin M$.
- \mathbf{T}_1 : If $x \neq y$ are points of X, then there exists an open subset $U \subseteq X$ such that $x \in U$ and $y \notin U$.
- T_2 : If $x \neq y$ are points of X, then there exist disjoint open subsets U and V such that $x \in U$, $y \in V$. This is the Hausdorff axiom.
- **T₃:** X is T₀, and if $x \in X$ and $A \subseteq X$ is a closed subset of X not containing x , then there are disjoint open subsets U and V such that $x \in U$ and $A \subseteq V$.
- T_4 : X is T_1 , and if A and B are disjoint closed subsets of X then there are disjoint open subsets U and V of X such that $A \subseteq U$ and $B \subset V$.

It is rather easy to see that each of these axioms implies the earlier ones. Some of these axioms have obvious equivalent versions. For instance, T_1 is equivalent to every point being closed and T_2 to the diagonal being a closed subset of $X \times X$.

Problem 3 (1 point). Show that X is T_0 if and only if every irreducible subset has at most one generic point.

Definition 3. We call X sober if it is T_0 and every irreducible closed subset has a generic point.

Problem 4 (3 points). Show that every finite T_0 -space is sober.

Recall that a set $\mathfrak F$ of subsets of a set X is called a *filter* if the following conditions hold:

- $X \in \mathfrak{F}$ and $\emptyset \notin \mathfrak{F}$.
- If $M \in \mathfrak{F}$ and $M \subseteq N \subseteq X$ then $N \in \mathfrak{F}$.
- If $M, N \in \mathfrak{F}$ then $M \cap N \in \mathfrak{F}$.

A *ultrafilter* is a \subseteq -maximal element of the set of filters or, equivalently, a filter such that for every $M \subseteq X$ one of M or $X \setminus M$ belongs to \mathfrak{F} . By Zorn's lemme every filter is contained in some ultrafilter.

If X is also equipped with a topology then we say that $x \in X$ is a point of condensation of $\mathfrak F$ if every neighbourhood of x has a nonempty intersection with every element of \mathfrak{F} and a *limit of* \mathfrak{F} if every neighbourhood of x belongs to \mathfrak{F} . Obviously every limit is a point of condensation and the opposite implication holds for ultrafilters but not for general filters.

Definition 4. A topological space X is called quasi-compact it the following equivalent conditions hold:

- Every open covering has a finite subcovering.
- If $(A_i)_{i\in I}$ is a family of closed subsets and $\bigcap_{i\in F} A_i \neq \emptyset$ for all finite subsets $F \subseteq I$ then $\bigcap_{i \in I} A_i \neq \emptyset$.
- Every filter has a point of condensation.
- Every ultrafilter has a limit.

If is called compact if it is quasi-compact and Hausdorff.

Problem 5 (5 points). Show that the above conditions are indeed equivalent, where the equivalence of the first two conditions should be taken for granted.

Definition 5. A topology base of a topological space X is a set \mathfrak{B} of open subsets of X such that every open subset of X is a union of elements of B.

It is easy to see that a set \mathfrak{B} of subsets of a set X is a topology base for some topology on X if and only if every finite intersection in X (including the empty intersection which is X) is a union of elements of $\mathfrak{B}.$

Problem 6 (2 points). For a topological space X, show the equivalence of the following two conditions:

2

- There is a topolay base $\mathfrak B$ closed under finite intersections in X and such that the elements of \mathfrak{B} are quasicompact.
- The set of quasicompact open subsets of X is such a topology base.

For a topological space X let $\mathfrak{Qc}(X)$ be the set of quasi-compact open subsets of X . Is is easy to see (and may used without further ado in all solutions) that this is closed under finite unions.

Definition 6. A topological space is called spectral if it is sober and satisfies the equivalent conditions of Problem 6.

Problem 7 (1 point). Let $Y \stackrel{f}{\longrightarrow} X$ be a map between topological spaces, where X satfies the conditions of Problem 6. Also, let $\mathfrak B$ be a topology base on X as in Problem 6. Show that the following conditions are equivalent:

- If $\Omega \in \mathfrak{Qc}(X)$ then $f^{-1}\Omega \in \mathfrak{Qc}(Y)$.
- If $\Omega \in \mathfrak{B}$ then $f^{-1}\Omega \in \mathfrak{Qc}(Y)$.

Obviously every map with these properties is continuous.

Definition 7. A spectral map is a map between spectral spaces satisfying the equivalent conditions of Problem 7.

Oviously spectral spaces form a category with spectral maps as morphisms. Every spectral map is continuous but in general there are continuous maps which are not spectral.

Problem 8 (3 points). Let $X \xrightarrow{f} Y$ be continuous where X is quasicompact and Y Hausdorff. Show that f closed in the sense that the image of a closed subset of X is closed in Y .

Two of the 22 points from this sheet are bonus points which are not counted in the calulation of the 50%-threshold for passing the exams.

Solutions should be e-mailed to my institute e-mail address (my second name (franke) at math dot uni hyphen bonn dot de) before Monday October 28.