Natural Proof Checking: The Naproche Project

Peter Koepke, University of Bonn, Germany

Mathematical Institute

Logic Colloquium 2011

Barcelona, July 12, 2011

universitétbonn\

Mathematical logic models mathematics

Mathematics <+ Mathematical logic

Language - basic notions symbols - Syntax
statements formulas
proofs formal derivations ()

Ontology - structures sets, relations, etc - Semantics
truth satisfaction relation

implication logical implication (F)

Mathematical logic models mathematics

— excellent agreement between ontology and semantics:
a group is a set such that ...

— complete agreement between syntax and semantics:
Godel’s completeness theorem: F = F

— hence: every proof can be replaced by a formal deriva-
tion

— formal mathematics: to actually produce formal deriva-
tions from informal proofs

On the feasability (complexity) of formal mathematics
N. Bourbaki:

[...] such a project is absolutely unrealizable: the tiniest proof at
the beginnings of the Theory of Sets would already require
several hundreds of signs for its complete formalization. [...]
formalized mathematics cannot in practice be written down in
full, [...]

J. McCarthy:

Proofs to be checked by computer may be briefer and easier to
write than the informal proofs acceptable to mathematicians.
This is because the computer can be asked to do much more
work to check each step than a human is willing to do, and this
permits longer and fewer steps.

Informal proofs ...

— use informal mathematical language, combining natural
language and formulas

— can be studied linguistically as texts in a specialised lan-
guage

— are directed at human experts, omitting background the-
ories and many details

— can be studied within argumentation theory

Bridging the gap

informal language
U
controlled natural language of mathematics
1 computational linguistics
formal language

l
TPTP first order language

Bridging the gap

informal argument
1
sequence of TPTP statements

1 automatic theorem provers
+ background theory

formal derivation for each statement?

!

acceptance / nonacceptance

The Naproche project: Natural language proof checking

— studies the syntax and semantics of the language of
mathematical proofs, emphasizing natural language and
natural argumentation, relating them to formal mathe-
matics

— models natural language proofs using computer-sup-
ported methods of formal linguistics (natural language
processing, NLP) and formal logic (automatic theorem
provers, ATPs)

— with Bernhard Schroder, Marcos Cramer, (Daniel
Kuehlwein, Merlin Carl, Jip Veldman)

The Naproche system

— To devise a strictly formal system for mathematics,
implemented by computer, whose input language is an
extensive part of the common mathematical language,
and whose proof style is close to proof styles found in
the mathematical literature.

— Naproche language: controlled natural language for
(parts of) mathematics

— background ontology (sets, functions, types, ...)

— bridging gaps in proofs by using ATPs

Linguistic analysis
— formal grammars, e.g., phrase structure grammar

— standard techniques of computational linguistics like tok-
enizing, parsing

— parsing mathematical notation like >-°°, - in combina-
tion with natural language parsing

— discourse representations

— proof representation structures

Layers of the Naproche system

1 Standard editor or web editor
TeX-style input text
I Natural language processing (NLP)
Proof representation structure (PRS)
1 First-order translation
First-order logic format (TPTP)
I Proof checker or automatic theorem prover (ATP)

“Accepted”’/“Not accepted”, with error messages

E. Landau, Grundlagen der Analysis, 1930

Theorem 30 (Distributive Law) :
z(y + z) =zy + 2z

Preliminary Remark: The formula

(y +z)z=yz + zx

which results from Theorem 30 and Theorem 29, and similar
analogues later on, need not be specifically formulated as theorems,
nor even be set down.

Proof: Fix r and y, and let M be the set of all z for which the
assertion holds true.

1) 2y +)=y =2y t+tz=ay+z-1;
1 belongs to M.

1I) If z belongs to M, then

z(y+2) = zy+ 22,
hence
z(y+5) = z(y+4)) = 2(y+a)+2 = (2y+22)+2
= zy+(zz+2) = zy + 22,

s0 that 2z’ belongs to 9.

Therefore, the assertion always holds.

Theorem 30: Forall z,y, 2z, v * (y + 2) = (v *
y)+ (2% 2).

Proof: Fix z,y. zx (y+ 1) =z *xy =z xy+
r=(zxy)+(rx1).

Now suppose = (y + z) = (z * y) + (* 2).
Then zx (y+2)=z*((y+2))=(z*(y+
) te=((zxy)+(rxz) +z=(*xy) +
(x*2) +a)=(z*y)+ (z*2).

Thus by induction, for all z, z % (y + 2) = (z *
y) + (x* 2). Qed.

Chapter 1 from Landau in Naproche

by Merlin Carl, Marcos Cramer, Daniel Kuehlwein

Abstract

This is a reformulation of the first chapter of Landau’s Grundlagen der Analysis in the Controlled Natural Language of Naproche.
Talk about sets is still avoided. One consequence of this is that Axiom 5 (the induction axiom) cannot be formulated; instead we use
an induction proof method.

Axiom 3: For every z, z'+#+ 1.
Axiom 4: If x' =19/, then z=1y.

Theorem 1: If z+# y then =’ y/".
Proof:
Assume that =+ y and 2’ =y'. Then by axiom 4, z =y. Qed.

Theorem 2: For all = =’ + .
Proof:
By axiom 3, 1’ 1. Suppose z'+ x. Then by theorem 1, (2')’+ z’. Thus by induction, for all z '+ z. Qed.

Theorem 3: If z+£ 1 then there is a u such that z =".

Proof:

If 1-#1 then there is a u such that 1 =u".

Assume z'+ 1. If u=xzthen 2’ =u’. So there is a u such that 2’ =u".
Thus by induction, if - 1 then there is a u such that x =u'. Qed.

Definition 1:

Define + recursively:
r+1=2a'
r+y'=(r+y).

Theorem 5: Forall z, 4, z, (x+y) +z=2+ (y + 2).

Proof:

Fix z, v.

(@+y) +l=(@+y)=v+y'=z+(y+1).

Assumethat (z+y)+2z=a2+ (y+2). Then (z+y)+2'=(z+y)+2) =@+ (y+2) =+ (y+2)=c+(y+2). So (z+y)+
=z (y+2)

Thus by induction, for all z, (z+y)+z2=z+ (y+ 2). Qed.

Lemmada: Forall y, 1 +y=1'.

Proof:

By definition 1, 1+ 1=1".

Suppose 1+ y =1y’ Then by definition 1, 1+ 3'=(1+y). So 1+ 3'=(y')".
Thus by induction, for all y 1+ y=1v". Qed.

Current projects

— formalizing Landau

— major rewrite of the Naproche software for greater mod-
ularity and more linguistic variants, including a weak
type formalism

— collaboration with A. Paskevich et. al. on System for
Automated Deduction (SAD)

Possible applications
— Natural language interfaces to formal mathematics
— Mathematical authoring and checking tools

— Writing texts that are simultaneously acceptable by
human readers and formal mathematics systems

— Tutorial applications: teaching how to prove

General issues

— Linguistics: construction and analysis of a mathematical
language with a definite first order semantics

— Can the gap between natural proofs and formal deriva-
tions be narrowed?

— There are natural(ly looking) proofs that are fully formal
with respect to the Naproche system

— Philosophy of mathematics: what is a mathematical
proof? Naturalism versus formalism?

Thank You!

The Naproche system:

DANY L\“\x..
Naproche - Natural Language Pruqnf@hgi

L“-'- ISR univer

Symbol
Let $x=y$. Then $y=x$.

Menu

home

members

web interface

examples

Burali-Forti
paradox

Group Theory

Landau

tutorial

formal
mathematics create PDF @ Logical Check @ Debug-Mode off

seminar

The Naproche system

create PDF @ Logical Check @ Debug-Mode off

Let $x=y$.
Then $y=x$.

Building PRS View PRS Time spent: 0 sec
H Creating Proof Obligations View PRS Graph Time spent: 0 sec
Discharging Proof Obligations
Logical check successful
1 theorem proved
0 proofs failed
0 inconsistencies found
Time spent: 0 sec

Creating Statistics Final Stats Time spent: 0 sec

The Naproche system
Proof obligation for y = z:
fof(’holds(2, 4, 0)’, conjecture, vd2 = vd1).

fof('holds(1, 3, 0)', axiom, vd1 = vd2).

The Naproche system

create PDF @ Logical Check @ Debug-Mode off

Let $x=y$.
Then $y=x$.

Building PRS View PRS Time spent: 0 sec
H Creating Proof Obligations View PRS Graph Time spent: 0 sec
Discharging Proof Obligations
Logical check successful
1 theorem proved
0 proofs failed
0 inconsistencies found
Time spent: 0 sec

Creating Statistics Final Stats Time spent: 0 sec

The Naproche system

Axiom 1.

For all x, y, $z%, $(x*y)*z=x*(y*2)$.

Axiom 2.
For all x, $1*x=x$ and $x*1=x$.

Axiom 3.
For all x, $x*f(x)=1$ and $f(x)*x=13.

Lemma 1.
If Su*x=x$ then $u=189.

Proof.

Suppose that $u*x=x$.

Then $(u*x)*f(x)=x*f(x)$. By axiom 1, $u*(x*f(x))=x*f(x)$. So by axiom 3 $u*1=18$.
Then $u=1% by axiom 2. Qed.

The Naproche system

Lemma 2.
If $x*y=1% then Py=f(x)$.

Proof.

Assume $x*y=19.

Then $f(x)*(x*y)=f(x)*13, i.e. $(f(x)*x)*y=f(x)$. Hence $1*y=f(x)$, i.e. $y=f(x)$.
Qed.

Theorem 1.

$f(x*y)=f(y)*f(x)$.

Proof.

Let $u=(x*y)*(f(y
Then $u=x*((y*f(
Thus $(x*y)*(f(y)
Qed.

)1(x))$.
y))*f(x))$ by axiom 1. So $u= x(f(x))=x*f(x)=1$.
“f(x))=1%. Hence $(f(y)*f(x))=f(x*y)$ by lemma 2.

The Naproche system

Axiom 1. Forall z, y, 2z, (xxy)xz=x % (y * 2).
Axiom 2. Forall z, 1xr=zand zx 1 ==.
Axiom 3. Forall z, x x f(z)=1and f(z)*xz=1.
Lemma 1. If uxx=xthen u=1.

Proof. Suppose that uxx=x. Then (u*xz)* f(z)=x* f(xz). By axiom 1, u* (z * f(x))=x %
f(x). So by axiom 3 ux1=1. Then u=1 by axiom 2. Qed.

Lemma 2. If z xy=1then y= f(x).

Proof. Assume z*y=1. Then f(z)* (zxy)= f(z)*1,i.e. (f(x)*z)*xy= f(x). Hence 1 x

Theorem 1. f(xxy)= f(y)* f(x).

Proof. Let u=(x*xy)x (f(y) * f(x)). Thenu=x* ((y* f(y)) * f(z)) by axiom 1. So u=x *

(Ix f(z))=2* f(x)=1. Thus (z*y) * (f(y) * f(x))=1. Hence (f(y) * f(x)) = f(x *y) by
lemma 2. Qed.

The Naproche system

Building PRS View PRS Time spent: 4 sec

Creating Proof Obligations View PRS Graph Time spent: 0 sec
Discharging Proof Obligations Logical check successful

17 theorems proved

0 proofs failed

0 inconsistencies found

Time spent: 3 sec

Creating Statistics Final Stats Time spent: 0 sec

