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How pouring honey on a doughnut
can help with understanding the solar system
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Motivation: two dynamical systems

The solar system (simplified).
Source: http:

//www.scienceclarified.com/
photos/solar-system-2865.jpg

A double pendulum.
Source: By JabberWok, CC

BY-SA 3.0, https:
//commons.wikimedia.org/w/

index.php?curid=1601029

Are such dynamical systems stable?
Do they show chaotic behaviour?
Do they have periodic orbits?

http://www.scienceclarified.com/photos/solar-system-2865.jpg
http://www.scienceclarified.com/photos/solar-system-2865.jpg
http://www.scienceclarified.com/photos/solar-system-2865.jpg
https://commons.wikimedia.org/w/index.php?curid=1601029
https://commons.wikimedia.org/w/index.php?curid=1601029
https://commons.wikimedia.org/w/index.php?curid=1601029
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Hamiltonian systems: from Newton’s to Hamilton’s
equations

▶ system of particles moving with n degrees of freedom

q(t) = (q1(t), . . . qn(t))

▶ forces are derived from a potential V (q) by F (q) = −∇V (q)
▶ Newton’s second law states mi q̈j = −∂V

∂qj

▶ Hamilton: consider momenta pj := mj q̇j
▶ total energy defines the Hamiltonian function

H : R2n → R, (q, p) 7→
n∑

j=1

p2
j

2mj

kinetic energy

+ V (q)
potential forces

▶ Newton’s equations become Hamilton’s equations

q̇j = ∂H
∂pj

and ṗj = −∂H
∂qj

, for j = 1, . . . n (H)
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Hamilton’s equations on a manifold: symplectic manifolds

▶ key insight: regard (q(t), p(t)) as trajectory
in phase space R2n = T ∗Rn

▶ double pendulum: rigid arms mean
q(t) = (q1(t), q2(t)) ∈ T2,
phase space is cotangent bundle T ∗T2

▶ for systems with constraints, treat (q, p)
as local coordinates of a point
moving in a manifold

Definition
A 2n-dimensional manifold is symplectic iff it is covered by
coordinate charts (q1, p1, . . . , qn, pn) such that for all smooth
H : M → R, all coordinate changes preserve the form of (H).



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Hamilton’s equation in symplectic manifolds

Fact
M is symplectic iff M admits a closed non-degenerate 2-form ω.

Definition
For (M, ω) symplectic, H : M → R smooth, the Hamiltonian
vector field XH of H is defined by ω(XH , ·) = −dH.

Exercise
Solutions (q, p) of (H) are the integral curves of XH .

Arnold conjecture
If M is a closed symplectic manifold and H : M → R smooth, then

# 1-periodic orbits of XH ≥
n∑

i=1
bi(M),

where bi(M) := rk Hi(M) is the i-th Betti number of M.
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Pouring honey on a donut: gradient flow lines reveal
topology!

▶ Pour honey on doughnut:
flows along negative gradient

▶ Four critical points:
flows stays fixed

▶ Flow lines tell us about topology:
e.g. non-contractible loops
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Generalising to general smooth manifolds

▶ M closed smooth manifold,
f : M → R Morse function

▶ Gradient ∇f for “nice”
Riemannian metric on M

▶ Morse index ind(p)
of critical point p ∈ M,
0 ≤ ind(p) ≤ dim M

For critical points p and q, consider the space

M(p, q) :=
{

γ : R → M gradient flow line with

lim
t→−∞

γ(t) = p and lim
t→∞

γ(t) = q
}

.

Key fact
For “almost all” choices of Riemann metric,
M(p, q) is a smooth manifold of dimension ind(p) − ind(q).
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Morse homology on smooth manifolds

▶ Is defined via a chain complex (CMk(f ), δ)
▶ Chain groups CMk(f ) := Z2 〈critical points of index k〉
▶ Differential δk : CMk(f ) → CMk−1(f ) defined by

〈p〉 7→
∑

q critical point
ind(p)−ind(q)=1

#2 M(p, q)/R 〈q〉

▶ Check: (CMk), δ) is a chain complex, i.e. δ2 = 0.
Its homology HM(M, f ) is the Morse homology of M.

Theorem
Morse homology HM∗(M, f ) is isomorphic to
the singular homology H∗(M;Z2) of M.
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Counting periodic Hamiltonian orbits via gradient flows
idea: transfer approach of Morse homology
Principle of least action
1-periodic Hamiltonian orbits are critical points of
symplectic action functional AH : {contractible loops in M} → R

Define Floer homology HF (H) on closed* symplectic manifolds
▶ generators: contractible 1-periodic Hamiltonian orbits
▶ differential: counts “Floer cylinders” connecting two orbits

Theorem (Floer 1989)
For a closed* symplectic manifold M, HF∗(H) ∼= Hdim(M)−∗(M).

Corollary (Arnold conjecture, major cases)
For a closed* n-dimensional symplectic manifold M,

# 1-periodic orbits of XH ≥
n∑

i=1
rk Hi(M) =

n∑
i=1

bi(M).

*: with some extra hypotheses
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What about the double pendulum or the solar system?

Bad news I: phase spaces R2n and T ∗T2 are not compact!

Theorem (Good news for the double pendulum)
For a closed* manifold M, the cotangent bundle T ∗M with canonical
symp. structure has symplectic homology

SH∗(T ∗M) ∼= H∗(ΛM),

where ΛM is the free loop space of M.
The homology of ΛT2 is known.

Bad news II: Hamiltonians on R2n can have no periodic orbits!

Theorem (Good news for Hamiltonians on R2n)
If H : R2n → R on (R2n, ω0) has compact support,
then XH has infinitely many 1-periodic orbits.
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Conclusion

▶ Hamiltonian systems evolve as orbits of the Hamiltonian
vector field on the phase space

▶ Arnold conjecture: topology of phase space forces the
existence of periodic orbits.

▶ proof idea: gradient flow on a manifold tells you its topology.

Thanks for listening! Any questions?
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Conclusion
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existence of periodic orbits.

▶ proof idea: gradient flow on a manifold tells you its topology.

Thanks for listening! Any questions?


	Introduction
	Hamiltonian systems
	Morse theory
	Hamiltonian Floer homology
	Conclusion and outlook

