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ABSTRACT. This paper is a companion to our paper, “Realizability of
modules over Tate cohomology,” in which we described an obstruction
theory which applies in a number of contexts. This companion paper
restricts attention to Tate cohomology, and gives constructions and proofs
within that framework. A special case of our main theorem is as follows.
Let k be a field and let G be a finite group. There is a canonical element in
the Hochschild cohomology of the Tate cohomology v € HH>~'H* (G, k)
with the following property. Given a graded H*(G,k)-module X, the
image of v in Extz;:(lc k)(X , X) vanishes if and only if X is isomorphic to
a direct summand of H* (G, M) for some kG-module M. If X is realizable
in this way, then the essentially different ways of realizing it form an affine

. . 2,—1
space whose associated vector space is Ext ;] @ k)(X , X).

1. INTRODUCTION

This paper is a companion to our paper [2], in which we introduced an
obstruction theory which applies in a number of different contexts.

Our investigation began with a study of the following question. Let k£ be a
field and let G be a finite group. Given a graded module X over the Tate co-
homology ring H*(G, k), how do we decide whether there exists a kG-module
M such that H*(G, M) = X? We described an element v € HH> 1H*(G, k)

with the property that its image ¥ € Ext;’[:(lG K (X, X) is zero if and only if X

is a direct summand of some module of the form H*(G, M). The element
in some sense encodes all possible information about Massey triple products
of elements of Tate cohomology.

The theory was then generalized to various other contexts, including mod-
ules over the cohomology of a differential graded algebra, and a general ob-
struction theory in the context of triangulated categories. Unfortunately, in
the process of generalization, it became hard for someone only interested in
the case of Tate cohomology to extract from that paper a short, self con-
tained version of the obstruction theory in that context. The purpose of this
paper is to give the motivation, a description of the obstruction, and the
proof of the theorem purely in the context of Tate cohomology, without any
extra baggage. The main theorem of this paper is the following. The case
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where N = k is the situation described above. We refer the reader to [2] for
generalizations and further comments.

Theorem 1.1. Let k be a field and let G be a finite group. Let N be a finite
dimensional kG-module, and write E = Exth(N N) for the Tate Ext algebra

of N, regarded as a graded k-algebra (so if N = k then E = H*(G,k)). Then
there exists a canonical element in Hochschild cohomology of E,

v € HH>1E,

with the following property. Given any graded E-module X, the following are
equivalent:

(i) The image 5 of v in Ext?];i_l(X,X) is zero.

(ii) There ezists a kG-module M such that X is isomorphic to a direct
summand of the graded E-module EthG(N, M).

The element -y has an interpretation as the degree three part of the Ayo-
structure on H*(G, k). The general context is that by a theorem of Kadeish-
vili [5], the cohomology of any differential graded algebra is an Ay-algebra,
well defined up to quasi-isomorphism. The Tate cohomology ring H *(G,k)
is the cohomology of a suitable Ay-algebra. The structure map mg for
the cohomology of a differential graded algebra is in general a Hochschild
(3, —1)-cocycle, and changing the quasi-isomorphism class changes mg by a
coboundary. The element y is the Hochschild cohomology class represented
by m3. All this is explained further in our paper [2], but not here; we refer
to Keller [6] for background material on A.-algebras and modules.

The element 4 is the first of a sequence of obstructions in Ext%’Z_n(X , X)
(n > 3) which decide when X is realizable, not only as a summand. However,
we have no nice interpretation of these higher obstructions and no predecessor
in Hochschild cohomology. The obstruction 4 works in the context of a
triangulated category with arbitrary direct sums. In this context, N is a
compact object in the category.

We also include a discussion of the parametrization of the realizations, in
the case where 7 is the zero element of Ext‘j{;’fl(X , X).

Consider the collection Split(X) (too large to be a set) of ordered triples
(M, i, 7) consisting of a kG-module M and maps of E-modules

X 4 Bxty (N, M) 5 X

whose composite is the identity map Idx. We put an equivalence relation on
this collection as follows. Two such triples (M, i, ) and (M’,4',7') are said
to be equivalent if there is a kG-module homomorphism p: M — M’ making
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the following diagram commute.

~ Extyg(N, M)

1 ™
X — o T~ X
Extyq(N, M)

™

As it stands, this does not define an equivalence relation because it is not
symmetric, but we complete it to one by taking the smallest equivalence
relation on Split(X) containing all pairs of equivalent triples (M, 4, 7). It is
not obvious that the equivalence classes in Split(X) form a set, but that is
part of the content of the following theorem, whose proof can be found in
Section 5.

Theorem 1.2. If ¥ = 0 then the equivalence classes in Split(X) form an
affine space whose associated vector space is Ext%_l(X,X).

To say that a set forms an affine space A with a given associated vector
space V means that there is a free and transitive addition map V x A — A.
So the difference between two elements of A is a well defined element of V,
and a choice of which element to call zero in A defines a bijection with V.

As in the case of the obstruction %, this theorem works in any triangu-
lated category with arbitrary direct sums. In algebraic topology, there are
analogous appearances of Ext? groups in classification problems of realizable
(co-)homology modules. Some comments on this can be found at the end of
Section 5.

In a related paper, Beligiannis and Krause [1] investigate the question of
when all maps from the Tate cohomology of a module are realizable. They
develop an extended Milnor sequence which computes the obstructions in
this context.

2. A MOTIVATING EXAMPLE

In this section, we motivate the discussion with an example. Let p be a
prime, G be a cyclic group of order p, and k be a field of characteristic p.

In the case p = 2, the Tate cohomology ring is H*(G, k) = k[z,z~'] with
deg(z) = 1. In the graded sense, this is a field: every module over it is free.
In particular, every module over H*(G, k) can be realized as H*(G, M) for a
suitable kG-module M. Namely, M can be taken as a kG-module with trivial
G-action, whose k-dimension is equal to the cardinality of a free generating
set for the given H*(G, k)-module.

The case p odd is somewhat different. The Tate cohomology H *(G,k)
is the tensor product of k[z]/(z?) with a Laurent polynomial ring k[y,y !].
Here, the degrees are given by deg(z) = 1 and deg(y) = 2. The indecom-
posable kG-modules in this case correspond to Jordan blocks of length at
most p. We write M,, (1 < n < p) for the indecomposable module of length
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n. It has a unique composition series, with just one submodule of each di-
mension from zero to n; we express this by saying that M, is uniserial. The
indecomposable projective kG-module is M, so the short exact sequence

0= My pn— My — M, =0

shows that Q(M,,) = M, . So Q*(M,) is isomorphic to M, if i is even and
M, ,, if i is odd. So for all ¢ we have

HY{(G, M) = Hom o (k, Q4 (M,)) = k.

Multiplication by y € H?(G, k) is an isomorphism, but multiplication by z
is harder to compute. For 2 < n < p — 2, = acts as zero. For n = 1 and
n=p—1, M, is k, respectively Q(k), so H*(G, M,,) is either H*(G, k) or its
shift in degree by one.

Let us consider the ﬁ*(G, k)-module X = k[y,y~!]. As long as p > 3, we
can choose a value of n satisfying 2 < n < p — 2, and then since z acts as
zero, H*(G, M,,) will decompose as a direct sum of X and its shift in degree
by one. However, if p = 3 then the only nonprojective indecomposables are k
and Q(k), and there is not enough room to realize X as a direct summand of
the Tate cohomology of a module. The problem is that the uniserial module
of length three is already projective.

The relationship with Massey products is as follows. In order to build a
module M,, whose cohomology has k[y,y~!] as a direct summand, we needed
to be able to string together at least four copies of the trivial module to make
a uniserial module of length four, so that we can form a module M, with
length at least two, and so that Q(M,,) also has length at least two.

The obstruction theory for uniserial modules is well understood in terms
of cup products and Massey products. If A, B, C and D are simple modules,
then a uniserial extension with submodule B and quotient A (which we denote
A/B) is represented by a nonzero element of Ext,lgG(A, B). The cup product
of an element b € Ext}(B,C) with an element a € Ext}(A, B) is zero in
Ext?;(A,C) precisely when the two extensions A/B and B/C can be fitted
together to make a uniserial module of length three of the form A/B/C. If
the cup product is zero, there may be a number of different ways of fitting
together the twofold extensions to form a threefold extension. They are
parametrized by elements of Ext},; (4, C); but if A happens to be isomorphic
to C then there can be unexpected isomorphisms between the resulting length
three modules.

Given elements a € Extjs(4,B), b € Exti(B,C), ¢ € Extyq(C, D), if
the products ba and cb vanish so that there are uniserial modules A/B/C and
B/C/D, we may ask whether they can be fitted together to form a uniserial
module of the form A/B/C/D. The obstruction to doing this is the Massey
triple product {c, b,a) € Ext?;(A, D). There is some indeterminacy involved;
we can change the length three modules using elements of Ext,ch(A, C) and
Exto(B, D). So the Massey product is really only well defined up to adding
an element of cExt;s(A,C) + Ext;o(B,D)a. So in the case of the cyclic
group of order three in characteristic three, there is a nonvanishing Massey
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triple product corresponding to the nonexistence of a uniserial module of
length four. It is (z,z,z) = y. For the cyclic group of order p in characteristic
p with p # 3, there are no nonvanishing Massey triple products, but the p-fold
Massey product (z,...,z) is equal to y.

The preceding discussion should at least make some sense of the following
theorem, which slightly generalizes the above setup and describes what hap-
pens in Theorem 1.1 if N = k and G has cyclic Sylow p-subgroups. We refer
to §7 of [2] for proofs.

Theorem 2.1. Suppose that k has characteristic p and G has cyclic Sylow
p-subgroups of order p™. Then the following describes the obstruction v €
HH3YH*(G, k).

(i) Unless p"™ = 3, we have v = 0.

(ii) If p" = 3 and G is p-nilpotent then H*(G,k) = k[y,y~ ', 2]/(z?) with
deg(z) = 1, deg(y) = 2. In this case, -y is represented by the (3,—1)-cocycle
m which satisfies

m(ylx Yz ® y‘q:v) = yititl i, j, LEZ
and which vanishes on all other tensor products of monomials in x and y.
(iii) If p" = 3 and G is not p-nilpotent then H*(G,k) = k[w,w™",v]/(v?)
with deg(v) = 3, deg(w) = 4. In this case, 7 is represented by the (3,—1)-
cocycle m which satisfies
m(vw' ® vw! @ vwt) = witIH2 i, j, L €L

and which vanishes on all other tensor products of monomials in v and w. [

3. NOTATIONS AND CONVENTIONS.

Unless otherwise specified, when we talk about kG-modules, we mean left
kG-modules. Let Mod(kG) be the category of all (not necessarily finitely

generated) kG-modules. If M and N are left kG-modules, then EX\tZG(N, M)
——%
is a right Extyo (N, N)-module by Yoneda composition. So unless otherwise

specified, E)RZG(N , N)-modules are right modules.
We write StMod(kG) for the stable category of kG-modules. The objects
in this category are the same as in Mod(kG), but the arrows are given by

Hom (N, M) = Homyg(N, M)/PHomyg(N, M)

where PHomy (N, M) is the linear subspace consisting of homomorphisms
which factor through some projective module. The category StMod(kG) is a
triangulated category, in which the triangles come from short exact sequences
in Mod(kG). As usual, we denote by QM the kernel of a map from a projec-
tive module onto M, and by ' M the cokernel of an embedding of M into
an injective module. These operations are well defined and mutually inverse
on StMod(kG).

If V is a Z-graded vector space, we write V[n] for the graded vector space
with V[n]® = V"% An element v of V"% when regarded as an element
of V[n]?, is written X"v. If V carries a differential d: V? — V! then the
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differential on V[n] is defined by d(X"v) = (—1)"E"(dv). If a graded ring A
acts on V on the left then it also acts on V[n] via A(E™v) = (—1)™"E"(A\v)
where m = deg(A). If A acts on V on the right then the action on V[n] is
given by (X)X = X" (vA).

Cohomology of a graded module over a graded algebra is bigraded. The
first index gives the cohomological degree and the second gives the inter-
nal degree. So for example if E = Ext};(N,N), we write Ext3/(X,Y) for

Ext},(X,Y[t]). So an element of Ext%’fl(X ,Y) is represented by an exact
sequence of graded modules

0-Y[-1] =X — X1 - Xo—> X 0.

Whenever convenient, we shall write a tensor product Ay ® --- ® A\, as an
n-tuple (A1,...,An).

4. THE OBSTRUCTION 7

We fix a kG-module N, and we write E for E;cZG(N, N). In this section,
given a graded E-module X, we define an obstruction

3 € Exty (X, X) = Ext}(X, X[-1]).

We prove that 4 = 0 if and only if X is isomorphic to a direct summand of an

E-module of the form E/b?czc(N, M), for some kG-module M. In Section 7,
we define the element

v € HH*» 'E = HH*(E, E[-1]),

and then in Section 8 we show that 7 is the image of v under the natural
map from Hochschild cohomology to Ext.
Let X be a graded E-module, and let

0-K-R5FR5X -0 (4.1)

be the beginning of a free resolution of X over E. In other words, each of Fj
and F} is a direct sum of copies of E, with degree shifts as necessary to hit
generators and relations for X, and K is defined as the kernel of p.

Since E}RZG(N, O"N) = E/))?GZG(N, N)[—n], we can find kG-modules Ry
and Rjp, each a direct sum of modules of the form Q"N, n € Z, such that
EEZG(N, Ry) = Fy and E/b?c,:G(N, R;) = Fy. Furthermore, there is a map
a: Ri — Ry such that

Exty (N, Ri) == Extyg (N, Ro)

S,

3 F,

IR

commutes. Complete a: Ry — Ry to a triangle in StMod(kG),
QOB - Ry — Ry — B. (4.2)
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The long exact sequence in cohomology then gives
co+ = Bxty (N, B)[-1] > Fy 2 Fy — Bxtyq(N, B) = Fy[1] = -
so that we obtain a short exact sequence
0= X -Zs Ext, (N, B) - K[1] = 0.
Let 4 be the element of
Extp(K[1], X) = Exty(K, X[-1]) = Ext}(X, X[-1])

defined by this short exact sequence. The second isomorphism here is the
dimension shift given by Yoneda splice with the exact sequence (4.1). The
element 7 is well defined, by the following (more general) theorem.

Theorem 4.3. Let
My — My — My — QilMQ
be any triangle in StMod(kG) and let X be the cokernel of

Extyc(N, My) = Exty(N, My)-
Then the exact sequence of the triangle,
0 = X[—1] = Bxtyq(N, M) — Extyg(N, My) — Extyg (N, My) — X — 0
represents the element y € Ext%’_l(X,X).

Proof. In the diagram of E-modules

| |

Fy Fy X 0
Bxty (N, My) — Bxty (N, My) —> X —>0

the vertical arrows, which have been constructed using the standard lifting
argument, can be realized by a map of triangles

OB Ry Ry B
M, M, My QilMQ.

This in turn gives rise to a map of extensions

0 - X[—1] = Ext, (N, Q0B) Ry Fy X0
0 > X[—1] = Ext, (N, My) = Bxt, (N, My) =~ Bxty (N, My) = X >0

which proves that these extensions represent the same element of the exten-
sion group Ext%fl(X, X), namely ¥; see Mac Lane [7], §II1.5. O
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Theorem 4.4. The following are equivalent:
N . 3,1
(i) ¥ =0 in Exty (X, X).

(ii) The sequence
0— X -2 Bxtyq(N, B) = K[1] = 0 (4.5)

splits.

(iii) The E-module X is isomorphic to a direct summand of E;tZG(N, M)
for some kG-module M .

Proof. For (i) < (ii), we notice that by construction, under the isomorphism
3,1 ~
Exty (X, X) = Extp(K[1], X),

the class 4 corresponds to the extension (4.5). So 4 = 0 if and only if this
extension splits.

It is obvious that (ii) = (iii), so we shall prove that (iii) = (ii). Since the
construction of 4 is additive in X, we may assume that X = E}RZG(N . M).
Then the map Fy — X is realized by a map Ry — M whose composite with
« is zero in StMod(kG), so this map lifts to a map B — M. The induced

map E/)RZG(N, B) — E\thG(N, M) = X splits the sequence (4.5). O

5. PARAMETRIZING THE REALIZATIONS

In this section, we prove Theorem 1.2, parametrizing the realizations in
the case where 7 is the zero element of Ext%’fl(X ,X).

Recall from Section 1 that Split(X) consists of the ordered triples (M, 7, 7)
consisting of a kG-module M and maps of E-modules

X 5 Bty (N, M) 5 X

whose composite is the identity map Idx. There is an equivalence relation
on Split(X) described Section 1, and Theorem 1.2 says that the equivalence
classes form an affine space whose associated vector space is Ext%_l(X , X)-
In order to prove this theorem, we associate to two triples (M,4,7) and
(M',i',7") a difference element in d(M,i,m; M',i',7') € Ext%_l(X,X). To
do this, we use the constructions described in Section 4. The composite
1og: Fy — E)FLZG(N, M) can be realized by a map of kG-modules §: Ry — M
whose composite with a: Ry — Ry is zero in StMod(kG). It therefore lifts
to a map j: B — M with the property that the composite j, co: X —
E/);t,:G(N , M) is equal to 3. So composing with 7 gives the identity map on
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K11 / |
N

e

——
EthG(N’ B)

Fy Fl[l]

07 Extyg(N, M)

It follows that (7o j, — 7' 0 ji) o0 = 0, so that 7o j, — 7’ o j. defines a
difference cocycle K[1] — X. The difference element d(M,i,m; M',i', 7') is
defined to be the image of this element of Hompg(K[1], X) in Ext%fl(X, X).
It is a routine exercise to check that this difference element does not depend
on the choices involved in the construction, and that the following identities
hold.

dM'i' 7'y M, i, 7) = —d(M,i,m; M' i, 7)
dM,i,m;M' i 7"y +d(Mi'\7's M" i 7"y = d(M, i, M 1)

If two triples (M, i,7) and (M',4', ') are equivalent via a map p: M — M’
then the map 6 may be chosen to be p o 6 and j' can be chosen to be po j.
Then moj = 7’ 05" and so the difference element d(M,i,7; M’ ', ') is zero.

We can find a set of representatives of the equivalence classes as follows. A
triple (M, 4, ) is equivalent to the triple (B, o, 7o j,) via the map j: B — M.
So every triple is equivalent to a splitting of the sequence (4.5). It remains
to examine when two such splittings are equivalent.

If A, X': Ext, (N, B) — X are splittings of (4.5), then A — X vanishes on
X, and defines the map K[1] — X representing the difference element in
Ext%fl(X,X). Conversely, any map K[1] — X can be used to adjust the
splitting. If (B, o, A) and (B, o, \') are equivalent then the difference element
is zero, so A — \': K[1] — X factors as K[1] — Fi[1] — X. We can realize
Fi[1] — X via a map Q7 'R; — B. The composite ¢: B - Q'R; — B
then satisfies Ao ¢, = X and ¢, o 0 = 0. It follows that two splittings \, N
are equivalent if and only if there is a map ¢: B — B with Ao ¢, = X and
¢+ 00 = o. If this holds, then Ao (¢ — 1), =X — X and (¢ — 1), 00 =0. So
¢ — 1 composes with Ry — B to give zero, and it follows that ¢ — 1 factors as
B — Q 'Ry — B. Taking cohomology, we get a map Fi[1] — E}RZG(N,B)
such that the composite Ext;o(N,B) — Fi[l] — E}RZG(N,B) is (¢ — 1)4.
This vanishes on X, and so gives a factorization K[1] — Fj[l] - X of
the difference cocycle. This means that the difference element is zero in
Ext%’_l(X ,X). This argument is reversible, so the splittings are equivalent

if and only if the difference element is zero in Ext%_l(X ,X). This completes
the proof of Theorem 1.2.
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Remarks 5.1. In algebraic topology, there are analogous appearances of Ext?
groups in classification problems of realizations of (co-)homology modules. For ex-
ample, given two p-local spectra X and Y and an isomorphism f: H*(X;F,) —
H*(Y;F,) of modules over the Steenrod algebra A, there is a corresponding ele-
ment in Eg’o of the Adams spectral sequence

By = Ext};! (H*(X;F,), H*(Y;Fp)) = [V X]es.

Ignoring convergence issues, the first of an infinite sequence of obstructions to real-
izability as a map is the d» differential to Eg '!'in this spectral sequence.

Here we study a slightly different problem, namely realizations up to summands,
and it turns out that then the only invariant is a class in Ext®. This situation
also comes up in stable homotopy theory in Bousfield’s classification of K-local
spectra at an odd prime [3]. Roughly speaking, Bousfield’s classification is by the
K-homology of a spectrum, including the Adams operations; these objects take
values in an abelian category with injective dimension two. This implies that every
algebraic homology object is realized as the K-homology of a spectrum, but there
may be genuinely different realizations (i.e., by K-local spectra which are not stably
equivalent).

Because the injective dimension is two, in the associated Adams spectral sequence,
the only obstruction to realizing an algebraic morphism between the K-homologies
by a geometric morphism is the dy differential, which lives in the respective Ext?
group. Bousfield refers to this obstruction as the “K,-k-invariant.”

6. THE MAP FROM HOCHSCHILD COHOMOLOGY TO EXT

If k is a field of coefficients and A is a k-algebra, we write A® for A ®; A°P,
so that A®-modules are the same as A-A-bimodules with scalars from k act-
ing the same way on both sides. If M is a A-A-bimodule, then Hochschild
cohomology of A with coefficients in M is defined to be HH*(A,M) =
Ext}c(A, M), In case M = A, we write HH*A for HH*(A, A).

If A is graded and M is a graded A-A-bimodule, then we use degree pre-
serving maps in the above discussion and define

HH" (A, M) = Exti. (A, M[j]),

and HH*(A, M) = HH*9(A,M). So the index i is the Hochschild cohomo-
logical index, and j comes from the internal grading. Our sign conventions
for working with this definition are given in Section 3.

Hochschild cohomology can be calculated using the free resolution, often
called the bar resolution,

s 2 ABMF2) G Al L G A®2 A
where the nth term in the resolution is A®("*2) The A¢-module structure is
given by

(y‘a ,u’l)()‘07 e )\n—}—l) = (/J‘)\Oa Ala R aAna >\n—|—1,u,)'
The differential is defined by

n

d(Ao; - - - Ant1) = Z(—l)i(AO, e AL Antl)-
i=0
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For more details, see Cartan and Eilenberg [4], §IX.6.
If M is a A-A-bimodule, then we have

Hom e (A®(™+2) M) = Homy, (A®", M).

So a Hochschild n-cochain with coefficients in M is given by a function from
n-tuples of elements of A to M. The differential is then given by

df()‘l’ s a)‘n) = (_1)|/\1Hf|/\1f()‘27 R /\n) +
n—1

DD O, Aidigt, - An) + (F1)F (A, A1) A

i=1

In the ungraded situation, all elements \; are interpreted as having degree
zero, so the sign on the first term on the right of this equation disappears.

If X is a right A-module, then Homy (X, X) is a A-A-bimodule, there is a
natural isomorphism

HH*(A, Homy (X, X)) = Ext} (X, X).

So the map of bimodules giving the A-action A — Homy (X, X) induces a
map
HH*A — Ext) (X, X).

An explicit way to describe the map is as follows. Given a projective resolu-
tion of A as a A°-module and a Hochschild cochain «:

P, Py A 0
la
A

we can apply X ®, — to obtain a cochain ax:

= XN, ——=X@Ph—X—0

lax

X

for this projective resolution of X. This construction commutes with the dif-
ferential, so an element of Hochschild cohomology gives rise to a well defined
element of Ext} (X, X).

7. DESCRIPTION OF THE ELEMENT 7y

Let P, be a complete resolution of N as a kG-module. In other words,
P, is obtained by splicing together a projective resolution and an injective
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resolution of N (recall that a kG-module is injective if and only if it is pro-
jective)

A~ A~ A A~ ~

"_>P2_>P1_>P0 P{—P 9g—"--
0

NS _
/ 0

We write Q"N for the kernel of P,_; — P,_5 for n € Z.
Denote by A the cochain complex

A = Homj}(P,, P,)

so that
A" = H Homyq (Pt j, Pj)
J
with differential d: A® — A™t! defined by

(df)(z) = 8(f(z)) — (=1)"f(9(x))

where 0 denotes the differential of ]5* With this definition, the cocycles in

A are the chain homomorphisms (negated if the degree is odd), and cocycles

differ by a coboundary if and only if the corresponding chain maps are ho-

mologous. So A is a differential graded algebra whose cohomology H*(A) is

Tate cohomology E)RZG(N ,N). So we can apply the construction described

in §3.3 of Keller [6], which we repeat here for the convenience of the reader.
First, note that Keller writes msy for the multiplication maps,

mg: A® A — A, me: H*(A) @ H*(A) — H*(A).

We regard H*(A) as a differential graded algebra with zero differential, and
we choose a morphism of complexes f1: H*(A) — A which induces the iden-
tity in cohomology. This amounts to choosing a representative cocycle for
each Tate cohomology class, in a linear fashion.

Now f; usually cannot be chosen to commute with multiplication, but at
least it commutes up to coboundaries. So we choose a graded map of degree
-1

for H'(A)@ H*(A) —» A
satisfying
dfz(z,y) = fi(zy) — f1(z) f1(y)- (7.1)
Given z, y, z € H*(A), we have

dl(—1) " f1(z) fo(y, 2) — fa(zy, 2) + fo(z,y2) — fo(z,y) f1(2)] = O,

so the element inside the bracket is a cocycle. This means that we can find
maps m3: H*(A)®3 — H*(A) of degree —1 and f3: H*(A)®3 — A of degree
—2, such that

fims — dfs = ma(f1 ® f2) — fa(mae ® 1) + fo(1 ® ma) — ma(f2 ® f1),
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or

fl(m3($ayaz)) - dfg(iL‘,y,Z) =
(1) f1(2) faly, 2) — falzy, 2) + folw,y2) — folz,y) fi(2). (7.2)

Lemma 7.3. The map m3: H*(A)®3 — H*(A) of degree —1 described above
is a Hochschild cocycle.

Proof. This follows from the identity
ma(l®@mg) —m3(me®1®1)+m3z(1®@my®1)
—m3(1®1Q®mg) +me(mz®1) =0,
or
(—1)|w|wm3(x, Y, Z) - mg(wx, Y, Z) + m3(w7 Y, Z)
- m;»,(w,x,yz) + m3(w7 z, ’y)Z =0. (74)

To check this identity, apply fi to the left-hand side. Using equations 7.1
and 7.2, we see that the result is a coboundary. Since f; is the identity map
on cohomology, the identity 7.4 is proved. O

Now the above construction of the Hochschild cocycle m3 depends on some
choices, but our next task is to prove that the Hochschild cohomology class
it determines does not depend on these choices.

Proposition 7.5. The Hochschild cohomology class
v € HH> 'H*(A)
determined by ms is independent of the choices made in defining ms.

Proof. First let f{ be another choice for the map fi. Then there is a map
g1: H*(A) — A of degree —1 such that

dgi(z) = fi(z) — fi(z).
Setting
£3(x,9) = fole,y) + g1(zy) — (=) f1(2)g1(y) — 91 (x) 1 (v)
fé(:v,y,z) = f3($ay’z) + gl(m3($’y’z))
— (=D)lg(2) faly, 2) — (=D f (2, 9)g1(2)

it is easy to check that equations (7.1) and (7.2) hold for f{, f4, f4 and ms.

Next, we keep f; fixed and let f) be another choice for the map fo. Then
there are maps ng: H*(A) @ H*(A) — H*(A) of degree —1 and go: H*(A) ®
H*(A) — A of degree —2 such that

fi(ne(z,y)) — dga(z,y) = folz,y) — folz,y).
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Setting

fi(,9,2) = fa(@,y,2) + (—=1)* fa(@,na(y, 2)) + f1(2)g2(y, 2)
— 92(zy, 2) + 92(2, yz) — fa(na(z,y), 2) — 92(2,y) f1(2)
my(z,y, 2) = ms(z,y,2) + (=1)*lzngy(y, 2) (7.6)
—na(zy, 2) + na(z,y2) — na(z,y)2,

we again check that equations (7.1) and (7.2) hold for fy, f3, f3 and mj.

Finally, we keep f1 and f fixed, and let fi be another choice for the map
f3. Then f3 differs from f3 by a cocycle, so dfs = dfs and equations (7.1)
and (7.2) hold for fy, fo, f4 and ms.

The upshot of this analysis is that the extent to which 3 is not well defined
is expressed by equation (7.6). This equation says that the difference between
the cocycles m} and mg is the Hochschild coboundary of the Hochschild
cochain ng: H*(A) @ H*(A) — H*(A). O

8. COMPARING 7y WITH 7

In order to make the comparison between the definitions of v and 7, our
goal is to construct a commutative diagram of E-modules

X @, B~ X 9, B —> X @, B®> L X @, E—~ X —0

N S R

0 — X[~1] — Ext, (N, 2B) F Fo X—0

(8.1)
where the top row is the Hochschild complex and the bottom row is the
sequence defining 4. An obvious simplification of this task is to choose F; and
Fy to be X ®;, E®? and X ®, E respectively, and to make the corresponding
vertical maps the identity. The hard part of the proof is then to construct
the map marked A, in this diagram in such a way that the two squares in
which it is involved commute. Accomplishing this will complete the proof of
Theorem 1.1.

We use the maps f1, fo, f3 and mg defined in Section 7 to define explicit
maps in Mod(kG) for use in the constructions which were used in Section 4
to define the bottom row of the above diagram. To this end, we define two
functors R and @ from Z-graded vector spaces to Mod(kG) via

RV)=V"er "N, Q)= V" & P

neL neL

The G action is defined via the right tensor factor. There is a short exact
sequence of kG-modules

0— R(V[-1) 5 Q(v) S R(V) >0,

where

AN, (1, vy Cny) = (=1)T0Col (g 1 G, B()).
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We also write 9: Q(V) — Q(V[1]) for the map defined by the same formula.
The module

R, = R(X ®; E®")
has the property that
Extyg(N, Rn) = X @4 ES)

which is the nth term of the complex described at the end of Section 6. We
also write Ry[m] for R(X ®¢ E®"[m]), Qn[m] for Q(X @ E*"[m]) and Qn
for @Q,[0]. We define d: R,[m| — R,_1|m] by

J(‘T’gla' . '7Cn7a) = (ICh@a- o aC’fl?a)
n—1
+ Z(_l)z(xa gla s aCi€i+17 - 'agnaa) + (_1)n($,<1, s 7f1(Cn)(a))
=1

After applying E/))RZG(N ,—), this induces the bar complex differential.
The same formula defines a map which we also denote d from Q,[m] to
Qn—1]|m]. The following diagram then commutes.

0 R, : Qn[l] 0 Rn[l] —0

R

0 Ry 1 — > Qn_a[1] 2> Rp_1[1] —= 0

An easy calculation using equation (7.1) shows that we have

dd(z,C1, .oy Cny @) = (2, 1y v vy Cneos (df2(Cre1, ) (@)
= (2,(1y -+ Cne2, O(f2(Cn—1,Cn) (@)
+ (1)1l £y (Cn1, Cn) (0)).
Define
$p=1®---®1@ma(fo®1): Qn[l] & Qn—2
so that
G, Gty Gny @) = (= 1) P42, 1, Gy fo(Gnmts Gn) (@)
Then we have
0P(x,C1y -5 Cny @) = (%,C15 -+ -5 Cn2, O(f2 (-1, Cn ) (@)
$O(x,C1y -, Cny @) = (1)l (. (1, G, D)
= (—1)/=1Gl(z, ¢, Gy F2(Cumts Go) (00)),

and so
dd = 0¢ + ¢0. (8.2)
Next, define

P=1® - ®1® (fimz —dfs): Qn[l] = Qn-s
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so that

¢($a Cla LR Cna Ot) = (_1)|$C1§n_3| (.Z', Cla R 7<7L—3a
[f1(m3(Cn-2sCn1,Cn)) — df3(Cn=2, Cn-1,Cn))()).

Then a similar calculation using (7.2) shows that

dg — ¢d = (—1)"1p. (8-3)
It is also easy to check that ¥0 = 0v, and so 1 induces a well defined map
which we also denote 9: R,[1] — R,_3.
Define B to be the pushout of

Rl—d>R0

|

Q1]
in the category of kG-modules, so that there are exact sequences
0—>R - Ry®Q[l]] = B—0 (8.4)
and
0— Ry — B — Ry[1] =0 (8.5)
giving rise to a triangle (4.2).
In order to define a map
A: Q1] — B,

we first define a map

A=(2): QM > Qo

or more explicitly,

X(‘7", CO, Cla Oé) = ((_1)|:c|(x, fQ(COa Cl)(a)) 3
(2o, 1, @) — (2, ¢o¢1, @) + (2, Co, f1(G1) (@)

Equation (8.2) shows that the left hand square of the following diagram
commutes, so that there is a map A such that the right hand square also
commutes.

Q2 Q2[1] Ry[1] 0
7)) )
(25)
Qo[—1] ® Q1 - Qo ® Q1] B 0

The map A induces a map

A X ®p E®® - Ext,o(N, B),
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_ Q2
N
0 — Qo[—1] Qo[-1]® Q1 Q1 0
8 ] 9 g) 8
Qsl1] —= Qa[1]
/ ) / ax
0 Qo Qo @ Q1[1] Q1[1] 0
) (@) )
Ry[1] —2 Ry[1]
S I
(3) 0o
0 Ry B Ri[1] 0
0 0 0
FIGURE 1

which is the desired map for diagram (8.1). It remains to check that the
two squares in diagram (8.1) in which A, is involved commute. For this
purpose, we examine the diagram in Figure 1. This diagram does not quite
commute. The four front squares and the back square commute, the triangles
commute, and the “side walls” commute. But the two “horizontal” squares
only commute after applying E/])RZG(N ,—). To see this, we calculate with
maps from R3[1] to B. Using equations (8.2) and (8.3), we have

o = xad= (54 (3)d= (52) (1%

= (80)(38)(3)+ (82) (&) = (82) (&) = (35):

Since 9: Q3[1] — R3[1] is surjective, it follows that

o
[SPISTH

A = (jﬁ) . R3[1] — B.

Now the map ( g) factors through the projective module @1[1]. So the map
in cohomology is zero, and it follows that the map

Aed: X @ E®*[1] = Extyg(N, Rs[1]) — Extyg(N, B)
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the same as the map induced by (15) Finally, it is easy to see that the

following diagram commutes.

[1]

X ®; E®4[1]

. \\

NV
VaN
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